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Abstract

Generating radiology report, especially for chest X-rays, remains a crucial yet time-consuming task in clinical 
practice. Although recent AI frameworks show promise, they face significant challenges including poor long-form 
generation, content hallucination, and the requirement of massive training datasets. To address these challenges, we 
propose a novel CLIP-based framework that incorporates a modified contrastive le\pt tuning mechanism that adapts 
BioBERT to radiology-specific terminology while preserving pre-trained knowledge. Furthermore, we implement an 
enhanced DenseNet121 architecture for improved feature extraction, particularly for rare pathological conditions. Our 
experimental evaluation on the IU X-ray dataset demonstrates state-of-the-art performance, achieving BLEU-1, 
ROUGE, and METEOR scores of 0.48, 0.37, and 0.22, respectively.

요  약

흉부 X-ray 영상에 대한 방사선 판독문 생성은 임상 진료에서 매우 중요하지만 시간이 많이 소요되는 작업

으로 남아있다. 최근 AI 프레임워크들이 유망한 결과를 보여주고 있지만, 긴 문장 생성의 한계, 내용 환각, 그

리고 대규모 학습 데이터 요구와 같은 중요한 도전과제들이 여전히 존재한다. 이러한 문제들을 해결하기 위해,
본 연구는 변형된 대조 학습 방식을 통합하여 학습 데이터 요구사항을 줄일 수 있는 새로운 CLIP 기반 프레

임워크를 제안한다. 제안한 프레임워크는 사전 학습된 지식을 유지하면서도 BioBERT를 방사선학 특화 용어에 

적응시키는 소프트 프롬프트 튜닝 메커니즘을 특징으로 한다. 더불어, 희귀 병리 상태에 대한 특징 추출을 개

선하기 위해 향상된 DenseNet121 아키텍처를 구현하였다. IU X-ray 데이터셋에 대한 실험 평가에서 제안한 방

법은 BLEU-1, ROUGE, METEOR 점수에서 각각 0.48, 0.37, 0.22를 달성하며 최첨단 성능을 보여주었다.
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Ⅰ. Introduction

Medical imaging technologies, such as chest X-rays, 
are widely used in various diagnostic and treatment 
scenarios. They enable physicians to accurately identify 
the causes of patients’ conditions, facilitating the 
development of effective treatment plans. However, 
generating accurate and comprehensive medical reports 
is a complex process that demands medical expertise 
and substantial diagnostic experience. This task 
consumes a considerable amount of time and effort 
from physicians, posing challenges in the face of 
increasing diagnostic workloads. The World Health 
Organization(WHO) anticipates a global shortage of 18 
million healthcare professionals by 2030, significantly 
affecting the number of radiology specialists[1]. 
Consequently, there is an urgent need to develop 
efficient and accurate methods for generating medical 
reports to enhance the productivity and quality of 
healthcare services. This growth has sparked significant 
research interest in computer-aided diagnostic and 
treatment technologies in recent years.

One promising solution that has received 
considerable attention is automatic radiology report 
generation, which aims to reduce the heavy workload 
faced by radiologists. Most modern methods utilize an 
encoder-decoder framework, wherein medical images 
(e.g., chest X-rays) are first transformed into latent 
feature representations using Convolutional Neural 
Networks(CNNs)[2][3]. These representations are then 
decoded into natural language sentences to produce 
radiology reports, employing Recurrent Neural 
Networks(RNNs)[4] or fully attentive architectures such 
as Transformers[5]. 

Despite current achievements, two primary 
challenges persist: (1) extracting comprehensive and 
clinically relevant information from the medical images 
and (2) ensuring accurate Cross-Modal Alignments 
(CMA), which involve linking generated textual 
content to corresponding regions within the images.

On the other hand, contrastive learning offers a 

compelling approach to address some of these 
challenges, particularly in the context of learning 
image-text pairs, such as X-ray images and their 
corresponding textual reports[6]. One of its key 
advantages is its ability to learn representations from 
large volumes of unlabeled data. It is particularly 
beneficial in medical domains where annotated datasets 
are often limited due to the need for expert labeling. 
Contrastive learning leverages the similarities and 
differences across image-text pairs to enhance model 
performance using abundant unlabeled datasets. 
However, recent contrastive learning approaches are 
often data-intensive and may struggle with small-scale 
datasets, a common constraint in the medical domain[7].

In this work, we propose a novel automatic 
radiology report generation approach that combines 
CLIP-based image representations with soft prompt 
tuning on BioBERT. This combination addresses the 
challenges associated with limited data availability and 
the demands of large-scale models. By employing soft 
prompt tuning, we effectively reduce the risk of 
overfitting on smaller datasets while utilizing the 
extensive medical knowledge encoded in the BioBERT 
to ensure accurate report generation. Simultaneously, 
we enhance the DenseNet121 architecture with an 
attention and pooling mechanism tailored to improve 
the extraction and interpretation of features from chest 
X-ray images. This dual focus on robust image 
representation and precise cross-modal alignment 
ensures the generation of radiology reports that are 
both accurate and contextually relevant. By integrating 
these techniques, we aim to provide a scalable, 
efficient, and reliable solution to support healthcare 
professionals in addressing the increasing diagnostic 
demands.

The main contributions of this work are 
summarized as follows:

1. We present an effective approach for leveraging 
the potential of large-scale contrastive learning models 
in the medical domain, specifically addressing the 
challenges of limited annotated data.
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2. Our method involves a soft prompt tuning 
method, which facilitates efficient knowledge transfer 
from large-scale BioBERT model while reducing the 
risk of overfitting.

3. Additionally, we design a novel attention and 
pooling mechanism within the DenseNet121 
architecture, enhancing its capability to learn and 
interpret anatomical structures for precise feature 
extraction in radiology report generation.

The remainder of this paper is organized as 
follows: Section II reviews related work in radiology 
report generation and contrastive learning methods. 
Section III details methodology, including the soft 
prompt tuning approach and the modified DenseNet121 
architecture. Section IV presents experimental results 
and performance evaluations, followed by a 
comprehensive discussion and ablation studies in 
Section V. Finally, Section VI concludes the paper 
with insights and future directions.

Ⅱ. Related Work

Radiology report generation has gained significant 
attention in recent years, with many methods 
leveraging the encoder-decoder architecture originally 
developed for image captioning tasks. However, 
generating radiology reports poses unique challenges 
compared to image captioning, as medical reports are 
typically longer and identification of clinical 
abnormalities in chest X-rays is more complex due to 
inherent data biases in training datasets. To address 
these challenges, researchers have proposed a variety 
of innovative contributions to traditional methods.

For instance, the Text-Image Embedding Network 
(TieNet) was proposed[8] to extract distinctive image 
and text representations using a multilevel attention 
mechanism integrated into an end-to-end trainable 
CNN-RNN architecture. TieNet first classifies chest 
X-rays by combining image features with text 
embeddings extracted from corresponding reports and 
then uses attention mechanisms to generate detailed 

reports. Building on this, another approach employs a 
CNN encoder coupled with multi-stage RNNs as 
decoders[9] demonstrating improved efficiency in 
translating medical images into reports compared to 
traditional RNN models. Medical reports often contain 
heterogeneous information, including paragraphs, tags, 
and keywords, presenting additional challenges. To 
address this, a multi-task framework[10] was 
introduced to perform tag and paragraph generation 
simultaneously. LSTM-based models are used to 
produce long and diverse medical report paragraphs. 
However, while RNN and LSTM models have been 
widely adopted for medical report generation, they 
suffer from inefficiencies in generating longer, coherent 
texts[11].

To overcome these limitations, transformer-based 
architectures with powerful attention mechanisms have 
become increasingly popular as decoders in radiology 
report generation tasks. For instance, a hierarchical 
transformer was proposed[12], integrating a CNN 
encoder to identify regions of interest using a 
bottom-up attention module, followed by a transformer 
decoder to produce coherent report paragraphs. To 
address the challenge of aligning key abnormalities 
with specific regions in chest X-rays, a Cross-modal 
Memory Network(CMN)[13] was introduced, enhancing 
the efficiency of transformer-based frameworks by 
incorporating shared memory, facilitating interaction 
and alignment between different modalities. Similarly, 
a memory-driven transformer[14] employed relational 
memory to capture crucial textual information during 
the generation process, integrating it into the decoder 
through memory-driven conditional layer normalization. 
Data bias presents another significant challenge in 
medical report generation, where normal visual regions 
often dominate over abnormal ones in X-ray images. 
To address this, the Align Transformer[15] was 
introduced, featuring the Align Hierarchical 
Attention(AHA) module, predicting disease tags from 
input images and hierarchically aligning these visual 
regions with disease tags. 
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While transformer-based models have demonstrated 
impressive accuracy in radiology tasks, the available 
Chest X-ray(CXR) datasets are often insufficient for 
training such computationally heavy models[20]. 

Recently, contrastive learning has emerged as a 
strong alternative to traditional encoder-decoder models. 
By learning the alignment between visual and textual 
data in an unsupervised manner, contrastive learning 
captures the inherent relationship between medical 
images and reports. ConVIRT[16], a notable technique 
in this domain, employs contrastive learning to 
maximize similarities between true image-text pairs 
while minimizing similarities for randomly generated 
negative pairs. This framework applies beyond report 
generation to other vision-language tasks, such as 
classification and image-to-text retrieval. Another 
innovative method, CXR-IRGen[17], utilizes Variational 
Autoencoders(VAEs) trained on contrastive embeddings 
derived from the MIMIC-CXR[18] dataset. While this 
approach uses encoders pre-trained on natural images, 
transferring them to medical report generation tasks 
can be challenging due to differences between natural 
and medical images, potentially limiting generalization 
in scenarios with limited data.

Ⅲ. Methodology

3.1 Overview

This study introduces a novel architecture for 
learning correlation between medical image-text pairs, 
building upon the fundamental principles of  
Contrastive Language-Image Pretraining(CLIP)[19], 
while introducing key modifications tailored for 
medical imaging applications. Our framework employs 
a dual-encoder architecture to analyze chest X-rays 
alongside their corresponding radiology reports, 
diverging from CLIP's original design through the 
strategic use of categorical cross-entropy loss instead 
of InfoNCE loss. This modification is particularly 
significant in the medical domain, where precise 
classification of pathological conditions requires more 
explicit supervision than general image-text matching.

While InfoNCE loss excels at learning broad 
image-text similarities through contrastive learning, 
categorical cross-entropy offers more detailed 
supervision by treating each image-text pair as a 
distinct class. This approach allows the model to 
capture subtle differences in medical conditions that 
might be overlooked in a purely contrastive approach.

Fig. 1. Proposed method
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The architecture comprises two primary components: 
a text encoder based on BioBERT, enhanced with 
prompt tuning capabilities, and a vision encoder based 
on DenseNet121 with advanced feature extraction 
mechanisms. These components are integrated into a 
cohesive multi-modal framework designed to learn 
joint representations of chest X-rays and their 
corresponding textual descriptions, as illustrated in 
Figure 1. This design choice enables our model to 
retain the powerful representation learning capabilities 
of CLIP while incorporating the precision and 
specificity required for medical imaging tasks.

3.2 Text encoder architecture

3.1.1 Text encoder: prompt-tuned BioBERT

Our text encoder leverages a pre-trained BioBERT 
model enhanced with Soft Prompt Tuning(SPT) to 
effectively process clinical text data. BioBERT is 
chosen as the backbone due to its proven effectiveness 
in biomedical text processing, having been pre-trained 
on a vast corpus of PubMed abstracts and clinical 
notes. However, clinical text processing presents 
unique challenges, including domain-specific 
terminology, complex medical relationships, and limited 
labeled data, which require additional architectural 
solutions. The key innovation in our approach is the 
integration of SPT, which introduces learnable prompt 
embeddings to adapt the pre-trained BioBERT model 
to the medical domain while maintaining its original 
parameters unchanged. This approach offers several 
advantages:

(1) It significantly reduces the number of trainable 
parameters, making the model more efficient and less 
prone to overfitting

(2) It preserves the pre-trained knowledge while 
allowing task-specific adaptations

(3) It enables better few-shot learning capabilities, 
crucial for medical domains where labeled data is 
limited.

3.1.2 Text processing pipeline

The text processing pipeline consists of several 
stages that progressively transform raw clinical text 
into rich, contextualized representations. Given a 
clinical report  , first, it passes through a specialized 
tokenization process using BioBERT's pre-trained 
tokenizer

 ∈ ℝ×           (1)

Here,   represents the sequence length and  is the 
embedding dimension (468 for BioBERT). This initial 
embedding matrix  captures the basic semantic 
properties of each token while maintaining the 
sequential structure of the input text. Further with a 
set of P learnable prompt embeddings ∈ℝ×  the 
token embeddings are enhanced, which are prepended 
to the token embeddings as given:

 ∈ℝ×           (2)

These prompt embeddings are initialized using a 
truncated normal distribution with a carefully chosen 
standard deviation of 0.02, by finding it empirically to 
provide stable training dynamics. Unlike traditional 
prompt tuning approaches, our prompts incorporate a 
dynamic scaling mechanism that adjusts the prompt 
influence based on the input sequence characteristics:

             (3)

where   is an attention-based scaling function that 
computes context-dependent importance weights for 
each prompt token. The enhanced embeddings are then 
processed through the frozen BioBERT model to 
obtain contextualized representations:

∈ℝ×         (4)

where  represents the final hidden states that capture 
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local and global contextual information. The frozen 
nature of BioBERT during this process ensures that 
the pre-trained medical knowledge is preserved while 
allowing the prompt embeddings to guide the 
interpretation of the input text. To obtain a fixed-size 
representation of the entire clinical text, we employ a 
sophisticated pooling strategy that combines both 
global and local information:

 ∈ℝ          (5)

This pooled representation captures the overall 
semantic content of the clinical text while maintaining 
sensitivity to important local details through the 
attention-weighted averaging process. The pooled 
representation undergoes a series of  projection 
layers that progressively refine the feature space. Let’s 
initial embeddings is represented as  Global, then

    (6)

where ∈… and ∈ ×, ∈   are 

learnable parameters, and GELU is the Gaussian Error 
Linear Unit activation function. The residual 
connections () ensure smooth gradient flow and 
prevent information loss during the projection process. 
Each projection layer is followed by layer 
normalization and dropout (rate = 0.1) to enhance 
training stability and prevent overfitting:

    (7)

This multi-layer projection architecture allows the 
model to learn increasingly abstract representations 
while maintaining the medical domain-specific features 
captured by the prompt-tuned BioBERT encoder.

3.3 Vision encoder

This section describes the proposed vision encoder 
architecture for processing x-ray images. This 

architecture introduces several key innovations in 
feature extraction and attention mechanisms, building 
upon the established DenseNet121 architecture while 
incorporating novel approaches to handle the unique 
challenges of medical image analysis. 

Given an input medical image ∈ℝ××, the 
network produces feature maps  ∈ℝ××, preserving both local 
anatomical details and broader structural patterns. The 
dense connectivity pattern inherent in DenseNet121 
ensures efficient feature reuse and gradient flow 
throughout the network, particularly important for the 
fine-grained analysis required in medical imaging.

Further, we implement parallel feature extraction 
pathways. These pathways process the initial features 
through depth-wise convolutions at different scales:

       (8)

The features from these parallel pathways are then 
integrated through point-wise convolutions and 
concatenation:

  ∈ℝ××   (9)

where  represents ×  convolution projecting 
features to d dimensions, and [;] denotes channel-wise 
concatenation.

A key innovation in our architecture is the 
dual-attention mechanism that separately processes 
channel and spatial relationships.

The channel attention mechanism implements a 
modified squeeze-and-excitation approach:

    ⊙       (10)

where ∈ℝ× and ∈ℝ× are 
learnable parameters (using reduction ratio r=4),  and  represent ReLU and sigmoid activations respectively, 
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and GAP denotes global average pooling. This 
mechanism dynamically recalibrates channel-wise 
feature responses.

The spatial attention mechanism computes 
position-specific importance weights:

    ※  ⊙   (11)

where  represents a convolutional layer with 
7×7 kernel size, producing a spatial attention map ∈ℝ××. This enables the network to focus on 
anatomically relevant regions.

Finally, we implement an adaptive pooling 
mechanism that learns to combine global average and 
max pooling operations:

 ∙  ∙   (12)

where ∈ is a learned weight determining the 
relative contribution of each pooling operation, 
allowing the model to adapt its feature aggregation 
strategy based on image-specific characteristics. This 
adaptive combination allows us to leverage both the 
noise-reduction benefits of global average pooling and 
the discriminative feature preservation of max pooling, 
dynamically balancing these properties based on the 
input image characteristics.

3.4 Contrastive learning

The goal of contrastive learning is to learn aligned 
representations of text and images. Given a batch of   text-image pairs, we compute the pairwise cosine 
similarity between all text and image embeddings:

            ∙  ∥  ∙  ∥
    (13)

The cosine similarities are normalized using the 

softmax function to produce probabilities:


          (14)

where   is a temperature parameter that scales the 
logits. The loss function is the average categorical 
cross-entropy loss for both directions (text-to-image 
and image-to-text):

 
    (15)

Here,   represents the probability of the correct 
text-image pair. Minimizing this loss ensures that 
embeddings of matched pairs are similar, while 
embeddings of mismatched pairs are dissimilar.

Ⅳ. Results

4.1 Datasets

In this study, the Indian University Chest X-rays 
(CXR) dataset is utilized which is widely recognized 
for radiology research, to train, validate, and test 
models. The dataset is available publicly and 
comprises 3,955 deidentified radiology reports and 
impressions, each paired with frontal and lateral CXR 
images, resulting in a total of 7,470 images. For this 
work, the dataset is divided into training, validation, 
and testing subsets in a 7:2:1 ratio. All model 
evaluations are conducted exclusively on the testing 
set to ensure unbiased performance assessment.

4.2 Comparison with state of the art models

The performance of our proposed framework is 
summarized in Table 1, which presents results based 
on the pre-split test data. The model supports retrieval 
tasks in both text-to-image and image-to-text formats.
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Table 1. Results based on natural language generation metrics

Datasets Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge Meteor

IU-Xray

Show-Tell [20] 0.24 0.13 0.10 0.07 0.30 0.15
Att2in [21] 0.24 0.13 0.11 0.09 0.30 0.16
AdaAtt [22] 0.28 0.20 0.15 0.12 0.31 0.16
M2trans [23] 0.40 0.28 0.16 0.14 0.32 0.17
R2gen [14] 0.47 0.30 0.21 0.16 0.37 0.18
Wang et al. [24] 0.45 0.30 0.21 0.15 0.38 -
Proposed method 0.48 0.31 0.22 0.18 0.37 0.22

Table 2. Qualitative results of proposed framework

Chest Xray Ground truth Predicted Category

The cardiac silhouette and mediastinum
size are within normal limits. There is no
pulmonary edema. There is no focal
consolidation. There are no XXXX of a
pleural effusion. There is no evidence of
pneumothorax.

No focal areas of consolidation. No
suspicious pulmonary opacities. Heart
size within normal limits. No pleural
effusions. No evidence of pneumothorax.
Osseous structures intact.

Normal

Heart size and mediastinal contour within
normal limits. Calcified granuloma in the
left lung base

Stable postsurgical changes. Heart XXXX,
mediastinum and lung XXXX are
unremarkable. Stable calcified small
granuloma in left base.

Abnormal

 To ensure a fair comparison with state-of-the-art 
models, we adopted an image-text retrieval approach. 
In this process, we first generated embeddings for all 
test images using the pre-trained vision encoder. 
Similarly, embeddings were created for all test reports 
as well as reports from the training data. Cosine 
similarity analysis was then performed between the 
test image embeddings and the report embeddings. 
Based on these similarity scores, the most relevant 
reports from the training set were retrieved for 
evaluation.

4.3 Qualitative results

We performed a qualitative analysis of the reports 
retrieved by our proposed framework for both normal 
and abnormal chest X-rays, as illustrated in Table 2. 
The retrieved results highlight the framework's ability 
to effectively differentiate normal cases from abnormal 

ones. Additionally, these qualitative results showcase 
the model's capacity to identify and accurately describe 
abnormalities, emphasizing its potential to capture 
critical clinical details in radiology reports.

Ⅴ. Discussion & Ablation

The development of the proposed framework 
involved a series of extensive experiments aimed at 
refining its core components. Two key innovations 
played a pivotal role in achieving the framework's 
success: soft prompt tuning and the modified 
DenseNet architecture. Soft prompt tuning addressed 
significant challenges in utilizing BioBERT for this 
task. Using BioBERT with frozen weights resulted in 
a lack of convergence, while fine-tuning all the 
weights led to overfitting on the small-scale dataset. 
By introducing soft prompt tuning, the framework 
reduced the number of trainable parameters, preserving 
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the pre-trained knowledge of BioBERT while allowing 
task-specific adaptations. This approach enabled 
efficient learning and better generalization, particularly 
in scenarios with limited labeled data, striking a 
balance between efficiency and performance. 

The modified DenseNet architecture introduced 
critical enhancements to improve the encoder's ability 
to analyze chest X-ray images effectively. The 
attention mechanism and pooling strategy were 
instrumental in capturing both global anatomical 
features and local details, enabling the model to focus 
on the most relevant areas of the images. This 
capability significantly enhanced the model's ability to 
identify key abnormalities in chest X-rays, addressing 
one of the primary challenges in radiology report 
generation.

5.1 Performance evaluation of modified
densenet

To evaluate the effectiveness of the proposed 
DenseNet modifications, a comparative analysis was 
conducted against the baseline DenseNet model. The 
results demonstrated significant improvements across 
all performance metrics, with BLEU-4 score increased 
from 0.39 to 0.48, ROUGE score improved from 0.30 
to 0.37, and similarly METEOR score from 0.16 to 
0.22. These performance gains can be attributed to 
specific architectural advancements in the modified 
DenseNet. 

The introduction of multi-scale feature extraction 
through parallel depthwise convolutions allowed the 
model to simultaneously capture fine-grained details 
and broader contextual patterns. This ensured a more 
comprehensive analysis of anatomical structures. 

Additionally, the dual attention mechanism combined 
channel-wise recalibration using squeeze-and-excitation 
with spatial attention. This allowed the model to 
prioritize informative feature channels and relevant 
spatial regions within the chest X-ray images. The 
pooling strategy further contributed to these 
improvements by introducing a learnable balance 
between Global Average Pooling(GAP) and Global 
Max Pooling(GMP). This ensured that both distributed 
and localized features were retained, which is crucial 
for generating accurate and detailed radiology reports. 

Overall, these architectural modifications enhanced 
the model's ability to analyze complex anatomical 
features and relationships, establishing its superiority 
over the standard DenseNet architecture in radiology 
report generation tasks.

VI. Conclusion

To evaluate the effectiveness of the proposed 
DenseNet modifications, a comparative analysis was 
conducted against the baseline DenseNet model. The 
results demonstrated significant improvements across 
all performance metrics, with BLEU-4 score increased 
from 0.39 to 0.48, ROUGE score improved from 0.30 
to 0.37, and similarly METEOR score from 0.16 to 
0.22. These performance gains can be attributed to 
specific architectural advancements in the modified 
DenseNet. The introduction of multi-scale feature 
extraction through parallel depthwise convolutions 
allowed the model to simultaneously capture 
fine-grained details and broader contextual patterns. 
This ensured a more comprehensive analysis of 
anatomical structures. 

Table 3. Ablation results between densenet and proposed modifications

Datasets Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge Meteor

IU-Xray
DenseNet 0.39 0.13 0.10 0.07 0.30 0.15

Proposed method 0.48 0.31 0.22 0.18 0.37 0.22
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Additionally, the dual attention mechanism 
combined channel-wise recalibration using 
squeeze-and-excitation with spatial attention. This 
allowed the model to prioritize informative feature 
channels and relevant spatial regions within the chest 
X-ray images. The pooling strategy further contributed 
to these improvements by introducing a learnable 
balance between GAP and GMP. This ensured that 
both distributed and localized features were retained, 
which is crucial for generating accurate and detailed 
radiology reports. Overall, these architectural 
modifications enhanced the model’s ability to analyze 
complex anatomical features and relationships, 
establishing its superiority over the standard DenseNet 
architecture in radiology report generation tasks.
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