
Journal of KIIT. Vol. 19, No. 7, pp. 55-65, Jul. 31, 2021. pISSN 1598-8619, eISSN 2093-7571 55

 * Department of Electronic Engineering, Graduate
School, Kumoh National Institute of Technology

 - ORCID1: https://orcid.org/0000-0002-8868-3373
 - ORCID2: https://orcid.org/0000-0001-9943-448X

** Department of IT Convergence, Kumoh National
Institute of Technology

 - ORCID: https://orcid.org/0000-0001-5708-854X

*** School of Electronic Engineering, Kumoh National Institute of Technology
 - ORCID: https://orcid.org/0000-0003-1222-8283

ž Received: Jun. 07, 2021, Revised: Jul. 24, 2021, Accepted: Jul. 27, 2021
ž Corresponding Author: Yong-Hwan Lee
 Department of Electronic Engineering, Kumoh National Institute of Technology
 Tel.: +82-54-478-7432, Email: yhlee@kumoh.ac.kr

FPGA Design for Implementation of Analog Output Board with
Eight Voltage Output Channels

Chang-Yong Lee*1, Jin-Su Kang*2, Young-Hyung Kim**, and Yong-Hwan Lee***

This research was supported by Kumoh National Institute of Technology(2019-104-015)

Abstract

In this paper, we design FPGA to control a DAC board that can output analog voltage upto 8 channels. The
board receives 16-bit data from the host and transmits it to 8 Digital-to-Analog-Converters (DACs) for analog
outputs. The FPGA functions as an intermediate between the host and the DAC, and each DAC can be
independently configured and the data flow can be controlled accordingly. To this end, the FPGA has 8 first-in
first-out (FIFO) buffers that can store 128 samples, and requests data through the interrupt to the host to seamlessly
supply data for each DAC channel. In the existing DAC boards, if the input signal is momentarily cut off or noise
is generated, the signal may be distorted. In this paper, accurate timing is provided because data flow is controlled
by FPGA using Hardware Description Language (HDL). In addition, this method has the advantage of being able to
be modified easily along with price competitiveness.

요 약

본 논문에서는 최대 8개 채널로 아날로그 출력을 내보낼 수 있는 DAC 보드의 제어를 위한 FPGA를 설계

한다. 보드에서는 16비트의 데이터를 호스트로부터 입력 받아 8개의 DAC(Digital-to-Analog-Converter)에 전달

함으로써 아날로그 출력을 내보낸다. FPGA는 호스트와 DAC 사이의 중간에 위치하며, 각 DAC를 독립적으로

설정하고 이에 맞추어 데이터의 흐름을 제어할 수 있다. 이를 위해 FPGA에는 128개의 샘플을 저장할 수 있는

8개의 FIFO(First-in First-out) 버퍼가 있으며 호스트와는 인터럽트 방식을 통해 데이터를 요청하여 각 DAC 채

널을 위한 데이터를 끊김 없이 공급한다. 기존의 DAC 보드들은 입력된 신호가 순간적으로 끊기거나 노이즈가

발생한다면 신호의 왜곡이 발생하기도 한다. 본 논문에서는 HDL(Hardware Description Language)을 사용한

FPGA로 데이터의 흐름을 제어하기 때문에 정확한 타이밍을 제공한다. 또한 이러한 방식은 가격 경쟁력과 함

께 수정이 가능하다는 장점이 있다.

Keywords
FPGA, signal conversion, multi-channel, data calibration, compensating for signal distortion, DAC

http://dx.doi.org/10.14801/jkiit.2021.19.7.55

https://crossmark.crossref.org/dialog/?doi=10.14801/jkiit.2021.19.7.55&domain=http://ki-it.com/&uri_scheme=http:&cm_version=v1.5

56 FPGA Design for Implementation of Analog Output Board with Eight Voltage Output Channels

Ⅰ. Introduction

Most of electronic products these days use many
Analog-to-Digital Convertors and/or Digital-to-Analog
Convertors. In particular, the DAC is used to drive
voltage-controlled devices by converting digital data
into analog signals. A device that accepts an analog
signal as an input is, for typical example, a speaker
or a motor.

In the case of an existing DAC board used in a
specific product, noise or signal distortion may exist
when digital data transit abruptly. Fig. 1 shows the
distortion of the digital signal when the signal data is
changed, and Fig. 2 shows the distortion of the digital
signal due to noise. The most important point of the
DAC board is to reduce data loss and noise as much
as possible and preserve the original data when
converting digital signals to analog signals. In the case
of a DAC board, it is impossible to replace the
function unit used in the existing product if it cannot
output signals properly or compensate for its
shortcomings.

If DAC operates as single channel, the output
efficiency decreases[1]. In the case of multi-channel, if
only the same operation is performed in multiplexing,
the existing workload may increase by the number of
channels, but if each channel cannot be controlled, the
efficiency is also reduced. Therefore, it should be
designed to allow a dedicated configuration for each
channel, and the speed of the DAC operation each
channel should be adjustable respectively[2][3]. For
speed adjustment, the conversion time should be set to
allow the user to adjust the speed according to the
desired channel when performing the DAC[4]. In the
step of converting digital data to analog data, a
correction step is required to control the speed as well
as to prevent data loss or incorrect transmission. In
the correction step, an operation is performed to
correct the existing digital data by using the offset
data, and it is transmitted to the DAC[5]. The
corrected data is output according to the speed set
above, and the data is continuously transmitted to the
DAC using Serial Peripheral Interface(SPI)
communication[6][7].

Fig. 1. Distortion of digital signals as data changes

Fig. 2. Distortion of digital signal due to noise

Journal of KIIT. Vol. 19, No. 7, pp. 55-65, Jul. 31, 2021. pISSN 1598-8619, eISSN 2093-7571 57

In this paper, we propose a module that
data-corrects the signal entering the input of the DAC
board using 8 multi-channels, controls the DAC
interval, and delivers the data to the DAC. For
compatibility with the existing DAC board, the ROM
was configured to have ID data, and it was set to
match the DAC board used in the existing product[8].
The distortion signal generated in the existing digital
data signal was output as a linear waveform using the
proposed method. It was verified using FPGA, and it
was confirmed whether the input signal was normally
output through simulation and emulation.

This paper is structured as follows. Section 2
describes the data input method and FIFO, and
Section 3 describes the register map used in this
system. Section 4 describes the structure and algorithm
of the overall system. Section 5 presents the
experimental results, and finally, conclusions and
outlines for future research directions are drawn in
section 6.

Ⅱ. Related Works

Big endian method is used for this module[9]. The
big endian is the convention used in the Motorola
68000 family of microprocessors and refers to the
VMEbus rule[10]. In big endian, low-order bytes are
stored at odd byte addresses, and byte access is
performed at odd address locations. Little endian has a
structure in which the lower byte is stored using an
even byte address. Existing products have a carrier
board and a method of mounting modules. In the case
of this paper, the system is configured using the
FPGA in the module and the corresponding module is
mounted on the carrier board. The use of the module
on the carrier board requires access to 8-bit data using
an even address location. For VMEbus carriers, odd
address locations must be used. Multiple modules can
be mounted on the carrier board, which are identified
by ID. For each module, there is an identification ID
according to the specification. The ID memory area

includes up to 32 bytes of information, and fixed and
variable information may exist in it. In the case of
fixed information, identifiers, model numbers, and
manufacturer's identification codes are included, and
variable information has a structure in which unique
information required by the module is included.

The buffer used in this module is a FIFO(First-In,
First-Out memory), and input data is stored in the
order in which it is input. When data is output, the
first stored data is processed in order by reading the
memory. Asynchronous FIFO is used, in case the
clock used to read or write data is different. As
shown in Fig. 3, FIFO uses 16-bit data, 7 address
values, and 128 samples.

Fig. 3. Structure of FIFO

Ⅲ. Register Map

Register map is made similarly to be compatible
with the existing DAC board. Unnecessary functions
are dealt with in different ways depending on the
situation. In the case of a register map, the size
consists of 16-bit data and an 8-bit address, the entire
address is not used, and a partial address is
used[11][12]. The data in the register map can be
written or read by the CPU using the system
bus[13][14]. The configuration of the register map can
be divided into three main categories: control, status,
and data.

3.1 Status and Control Part of Register Map

Fig. 4 shows the basic state and control part of the
register map. The Channel Software Reset in Fig. 4 is
used to reset each of the eight multiple channels. As

58 FPGA Design for Implementation of Analog Output Board with Eight Voltage Output Channels

shown in Fig. 5, if the 15th to 8th data bits are set
to 1, a software reset is performed for each channel.
When software resets, the counter values of individual
channels, control registers, and FIFO buffers are
cleared. Using software reset is also useful for
initializing in case of an existing malfunction.

Fig. 4. State and control part of the register map

Fig. 5. Details of channel software reset

In the case of Start Convert & FIFO Full status in
Fig. 6, there are two functions. When 7~0 of data
bits are set to 1, conversion of individual channels is
started. After each data is corrected and stored in a
register, the data is transmitted through SPI
communication. However, in order to transmit a
channel, the FIFO register of each channel must be set.

Fig. 6. Detailed view of start convert & FIFO full status

In fact, channel conversion starts at least 6.625us
after the Start Convert bit is set, but it is stable to
set it to proceed after 10us. The register is also used
to indicate the FIFO status of the currently used
channel. In this case, the set bit of each channel
indicates that the data is full, and data transmission is
not approved. Data transfer here refers to writing
additional data in the CPU. It is important to avoid
writing additional data to the FIFO buffer because
data transfer may not be acknowledged and a system

bus error may occur. In the case of the register in
Fig. 4, it is designed so that data can be written in
16 bits or 8 bits. The entire state is cleared upon
software or hardware reset.

3.2 Interrupt Part of Register Map

In the Interrupt Status of Fig. 7, data bits 15~8
indicate the interrupt status. The interrupt condition of
each channel occurs when the data of the FIFO is
smaller than the set reference value. In case of
interrupt, it can be turned on or off through the
interrupt enable signal.

Fig. 7. Details of Interrupt status

In the case of the Interrupt Vector in Fig. 8, it can
be used as a pointer in the routine handling interrupt.
The size of the vector is 8 bits, as allocated by the
register map, and can be used to point to one of 256
locations.

Fig. 8. Interrupt Vector

3.3 Calibration factor part of register map

The data related to the calibration coefficient of the
register map in Fig. 9 is used to fetch the data stored
in EEPROM and correct the FIFO data.

Fig. 9. Calibration factor memory in register map

Journal of KIIT. Vol. 19, No. 7, pp. 55-65, Jul. 31, 2021. pISSN 1598-8619, eISSN 2093-7571 59

The calibration steps can adjust and improve the
accuracy of the uncalibrated data sent by the software.
There is a unique offset and gain correction factor for
each channel, which helps with data correction. The
existing method determines whether to read or write
data to the data of address 04 and puts the address
value. Depending on the value to be read or written,
the data in address 05 is written or the data stored in
number 06 is displayed. Since this method has to go
through the EEPROM, there is a disadvantage in that
it is slow in transmitting and receiving data. To
compensate for this, the RAM was configured to read
or write data directly. The data correction method is
as in Eq. 1.

   (1)

The input data used to derive the "result" in Eq. 1 is
as follows. In Eq. 1, Data refers to the value input
from the CPU, which is software. In the case of gain,
it refers to the value obtained by dividing the error
value of the gain stored in the memory by the value
of 262,144. Offset refers to the value obtained by
dividing the offset error value stored in the memory
by 4. Volts vary depending on the range of voltage
used. If the voltage used is polarity, -5V to +5V, it
has a value of 0, but if it is unipolar, 0 to 10V, it
has a value of 32,768.

3.4 FIFO Control Part of Register Map

The channel register of the FIFO is shown in Fig.
10. It is composed of 8 channels, and each channel
has 4 sections of FIFO, and is equally composed of
registers related to control / status, DAC interval, and
FIFO buffer. Through this, each channel can operate
in a setting independent of other channels. Each
section consists of an 8-bit control status register, an
8-bit timer prescaler, a 16-bit conversion timer and a
16-bit FIFO buffer.

Fig. 10. Channel registers in FIFO

The status and control registers are used to indicate
the status of the FIFO as shown in Fig. 11. Bit 0
indicates the empty state of the FIFO. Bits 2~1
determine whether to use FIFO, single mode,
continuous mode, or whether to use external trigger
input when outputting FIFO. Bit 3 is used to select
whether to use as input or output when using an
external trigger. Bit 4 determines whether the
corresponding channel uses interrupt. Bits 6~5
determine whether to generate an interrupt when the
number of data in the current FIFO is less than how
many data are present in the FIFO Since there are 2
bits, 4 can be selected, and either not used, or 4, 16
or 64 can be selected. Bit 7 is not used.

Fig. 11. Detailed view of status and control registers

In the case of the timer prescaler in Fig. 12, it is
used together with the conversion timer. Here, in the
case of the timer prescaler, the hexadecimal value of
35 is the minimum value. If a value smaller than this
is applied, there is a risk of malfunction. When this is

60 FPGA Design for Implementation of Analog Output Board with Eight Voltage Output Channels

applied, conversion starts at 6.625us intervals, which
can achieve a speed of about 150KHz. When
converting to 150KHz, the conversion accuracy is
lowered, so the recommended conversion speed for the
existing module is 100KHz.

Fig. 12. Detail view of timer prescaler and conversion
timer

That is, 10us is recommended. Eq. 2 is used to
calculate this value, where the unit of the calculated
value is microsecond.



Pr
 (2)

Based on the input 8MHz clock, the value of the
timer prescaler and the conversion timer value are
multiplied, and the conversion time is obtained by
dividing by 8. Here, the range of the timer prescaler
value has a decimal value of 53~255 as mentioned in
the register map, and the range of the conversion
timer value has as much as 1~65,536 data. Using Eq.
2 when the timer prescaler value is 53 and the
conversion timer value is 1, a value of 6.625us is
derived, but the minimum value is redefined as 10us
because the conversion accuracy is poor. To this end,
the initial value is set when the value of the timer
prescaler is 80 and the timer value is 1.

Each channel has a dedicated FIFO buffer that can
hold 128 samples of data. FIFO data is used for data
transmission, and the size is 16 bits. When starting to
write new data, care must be taken not to full the
FIFO. If there are 128 samples of data in the FIFO,
additional data should not be written. Writing
additional data may cause an error. To avoid this

error, you can read the FIFO Full flag bit before
writing the FIFO. A software or hardware reset can
also be implemented to clear the FIFO.

As mentioned earlier, it is good practice to enable
interrupts through the threshold of interrupts when the
FIFO is almost empty. When interrupt occurs, the
number of new data should be written to the FIFO by
subtracting the existing threshold from the total
number of data. Any remaining addresses are not used.

Fig. 13. Structure of overall system

Ⅳ. System Structure

4.1 Overall System Structure

The structure of the whole system is shown in Fig.
13. CPU, Spartan 3A, and DAC chip exist in the
whole system. The CPU is used to change the initial
values of various register maps and FIFO settings, or
to perform status and control. The internal structure of
FIFO is configured as shown in Fig. 14. It also
serves to supply data when an interrupt occurs. In
Spartan 3A[15][16], there is a bus system and register
map to communicate with the CPU mentioned above,
and an SPI module for communicating with FIFO and
DAC of 8 channels. In order to operate 8 channels
independently, it is used to transmit data to the DAC
using the associated register map and 1 SPI
communication that can set the mode and data
transmission period of 1 FIFO per each channel.

Journal of KIIT. Vol. 19, No. 7, pp. 55-65, Jul. 31, 2021. pISSN 1598-8619, eISSN 2093-7571 61

Fig. 14. FIFO configuration diagram

4.2 Algorithms

The flowchart of the algorithm is shown in Fig.
15. When the system power is applied and clock and
reset are applied, the system operates. According to
the flowchart, it is judged whether there is data in the
FIFO, and if it is not Full, the data is stored in the
FIFO in order. If all 128 samples of data are saved,
no additional data is saved. When the Start Convert
signal of each channel is generated, the data is
sequentially retrieved from the FIFO and the data is
corrected. The corrected digital data is stored in the
FIFO Port of the FIFO register of each channel.
When outputting data, it loads and outputs data from
the aforementioned FIFO Port.

Two main modes are used to output data, single
mode and continuous mode. The single mode is a
structure that outputs the last pointer value of the
FIFO whenever the Start Convert signal occurs. In the
continuous mode, when the Start Convert signal is
generated, the FIFO pointer value is incremented by 1
at regular intervals to sequentially export data. In the
case of single mode, since only single data is used, a
specific voltage value is displayed by outputting only
the data value when outputting. In the continuous

mode, since continuous data is output, a sine wave or
other waveform is output.

Fig. 15. Algorithm flowchart

62 FPGA Design for Implementation of Analog Output Board with Eight Voltage Output Channels

In the case of SPI, data is exchanged between one
master and several slaves, but in this system, there is
no reason to return the digital data output to the
DAC, so the MISO (Slave Output Master Input) pin
is removed. Other signals such as SCLK, MOSI
(Master Output Slave Input), SS (Slave Select) or CS
(Chip Select) are used. Due to the characteristics of
the DAC chip, when outputting data, the data is
transferred using SPI communication, and the data is
transferred while making the LDAC (Load DAC)
signal of each channel LOW. SPI period setting is
determined by calculating the values ​​of Timer
Prescaler and Conversion Timer of the FIFO register
of each channel. In this case, it is a multiplication
structure, but an operation is performed using a
double counter.

When performing SPI output, additional correction
is required for the corrected data. If the output range
of ADC is positive, it helps to output positive data by
adding the value of 16384.

4.3 Interrupt Signal Generation Routine

As illustrated in Fig. 16, the interrupt of each
channel checks whether the interrupt is enabled.

Fig. 16. Flowchart of interrupt generation

If it is enabled, it proceeds to the step of
comparing whether the number of samples is greater
or less than the currently set threshold value. If the
number of samples is smaller than the set threshold,
the corresponding channel generates an interrupt and
requests data from the CPU. When an interrupt
request occurs, the CPU supplies data.

Ⅴ. Experimental Results

5.1 Experimental Environment

The experimental environment is as follows. The
FPGA used was Spartan3A, and for the DAC module,
8 DAC7731EC chips were used. As mentioned earlier,
the SDI pin is present, but the SDO pin is not used.

5.2 Simulation of FIFO

Design the FIFO and verify the results through
simulation. The simulation situation is as follows.
Interrupts are enabled and the threshold is 64.
Looking at the result in Fig. 17, if the current sample
value is less than 64, a signal called o_th is
generated, and this signal generates an interrupt.

5.3 Simulation of SPI Communication

Fig. 18 shows the simulation result of SPI
communication. If the output data is 1000_0100_
1101_1110, when the count value of SPI sequentially
decreases from MSB to LSB at signal timing, data is
output to SDI.

5.4 Measurement of the Output Waveform

Fig. 19 shows the final result waveform. In the
experimental environment, the same data was input to
only two channels and operated in continuous mode.
At the beginning of the experiment, the signal was
distorted after a certain period of time in the data
output, but it was identified as a problem with the
generation period of the SPI output and was corrected.

Journal of KIIT. Vol. 19, No. 7, pp. 55-65, Jul. 31, 2021. pISSN 1598-8619, eISSN 2093-7571 63

Fig. 17. Result of Interrupt generation simulation

Fig. 18. Results of SPI communication simulation

Fig. 19. Measurement of DAC data output waveform

Ⅵ. Conclusion

In the existing board, signal distortion occurred
when the channel was changed or the data was cut
off. In addition, generation of noise was a cause of
distortion. To compensate for this, the system was
implemented using FPGA, and it can be seen that it
operates without unreasonableness even when executed
under the same conditions as distortion. Existing
boards have the disadvantage of being expensive
because they have unnecessary functions in addition to
the functions required by the user. When using the
method presented in this paper, since only the
necessary parts are implemented, it is competitive in
price and has the advantage of being able to modify

it because it is implemented in FPGA. This method
also can be used in the module for viewing results in
digital image processing.

References

[1] X. F. Zhang and H. X. Luo, "A Multi-Channel
Data Acquisition System and its Performance
Analysis Method Based on FPGA", Advanced
Materials Research, Vol. 490–495, pp. 37–41, Mar.
2012. http://dx.doi.org/10.4028/www.scientific.net/
AMR.490-495.37.

[2] B. Lonla Moffo and J. Mbihi, "A Novel Digital
Duty-Cycle Modulation Scheme for FPGA-Based
Digital-to-Analog Conversion", IEEE Transactions
on Circuits and Systems II: Express Briefs, Vol.
62, No. 6, pp. 543–547, Jun. 2015. http://
dx.doi.org/10.1109/TCSII.2015.2407233.

[3] C. H. Liu, J. S. Ji, and A. Q. Qi, "Design of
Control Module for Serial DAC Based on FPGA",
Advanced Materials Research, Vol. 765–767, pp.
2456–2459, Sep. 2013. http://dx.doi.org/10.4028
/www.scientific.net/AMR.765-767.2456.

[4] E. Miyata, C. Natsukari, D. Akutsu, T. Kamazuka,

64 FPGA Design for Implementation of Analog Output Board with Eight Voltage Output Channels

M. Nomachi, and M. Ozaki, "Fast and flexible
CCD-driver system using fast DAC and FPGA",
Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, Vol. 459,
No. 1–2, pp. 157–164, Feb. 2001. http://dx.
doi.org/10.1016/S0168-9002(00)01015-9.

[5] Z. Y. Liu, "One-Bit DAC Application Design in
Audio Signal Processing", Advanced Materials
Research, Vol. 971–973, pp. 1676–1679, Jun.
2014. http://dx.doi.org/10.4028/www.scientific.net/
AMR.971-973.1676.

[6] Tauzin, G., Cordier, B., Gros, M., Mandrou, P.,
and Crespin, S., "SPI Calibration", Nuclear
Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, Vol. 442, No. 1–3, pp.
408–411, Mar. 2000. http://dx.doi.org/10.1016/S0168
- 9002(99)01263-2.

[7] L. Xiao, L. Li, W. Nie, X. Xie, and H. Wan, "A
digital signal processor-based pulse programmer
with performance of run-time information handling
for magnetic resonance imaging", Measurement
Science and Technology, Vol. 26, No. 6, pp.
065402, Apr. 2015. http://dx.doi.org/10.1088/0957-
0233/26/6/065402.

[8] P. Wang, Y. Zhang, and J. Yang, "Design and
Implementation of Modified DDS Based on
FPGA", Procedia Computer Science, Vol. 131, pp.
261–266, Apr. 2018. http://dx.doi.org/10.1016/
j.procs.2018.04.212.

[9] H. Kirrmann, "Data Format and Bus Compatibility
in Multiprocessors", IEEE Micro, Vol. 3, No. 4,
pp. 32–47, Aug. 1983. http://dx.doi.org/10.1109/
MM.1983.291136.

[10] M. Lobelle, "VME bus interfacing: A case
study", Interfaces in Computing, Vol. 1, No. 3,
pp. 193–210, Aug. 1983. http://dx.doi.org/10.1016/
0252-7308(83)90001-6.

[11] N. B. Ameur, N. Masmoudi, and M. Loulou,

"FPGA-Based Design Δ–Σ Audio D/A Converter
with a Resolution Clock Generator Enhancement
Circuit", Journal of Circuits, Systems and
Computers, Vol. 24, No. 03, pp. 1550037, Feb.
2015. http://dx.doi.org/10.1142/S0218126615500371.

[12] S. Dessai and S. G., "Embedded Hardware
Circuit and Software Development of USB based
Hardware Accelerator", International Journal of
Reconfigurable and Embedded Systems(IJRES),
Vol. 7, No. 1, pp. 21, May 2018. http://
dx.doi.org/10.11591/ijres.v7.i1.pp21-33.

[13] S. H. Zhu, "Hardware Implementation Based on
FPGA of Interrupt Management in a Real-time
Operating System", Information Technology
Journal, Vol. 12, No. 5, pp. 943–950, Feb. 2013.
http://dx.doi.org/10.3923/itj.2013.943.950.

[14] S. Attia and V. Betz, "Feel Free to Interrupt",
ACM Transactions on Reconfigurable Technology
and Systems, Vol. 13, No. 1, pp. 1–27, Feb. 2020.
http://dx.doi.org/10.1145/3372491.

[15] Tian, Jinwen, Li, Jingqi, Xu, Hongbo, and Liu,
Jian, "System hardware design of video image
catching and processing system and its realization
based TMS320C6414", Journal of Huazhong
University of Science and Technology.Nature
science edition, Vol. 33, No.7, pp. 17-19, Jul. 2005.

[16] Z. H. Liu, Y. L. Mao, and C. L. Song, "One
Kind of Data Acquisition System Used in PC104
Embedded Navigation Computer", Applied
Mechanics and Materials, Vol. 347–350, pp. 24–27,
Aug. 2013. http://dx.doi.org/10.4028/www.scientific.
net/AMM.347-350.24.

Journal of KIIT. Vol. 19, No. 7, pp. 55-65, Jul. 31, 2021. pISSN 1598-8619, eISSN 2093-7571 65

Authors

Chang-Yong Lee

2019 : M.S degrees in Department

of Electrical Engineering,
Kumoh National Institute of

Technology
Research interests : Digital SoC,

Image Processing, Verilog HDL

Jin-Su Kang

2020 : B.S degrees in Department
of Electrical Engineering,

Kumoh National Institute of
Technology

Research interests : SoC, Interface,
Embedded system

Young-Hyung Kim

1992: BS degree in School of
Electronic Engineering, Kumoh

National Institute of Technology
2010 : Ph.D. degree in Dept. of

Industrial Management, Kumoh
National Institute of Technology

2017 ~ present : Associate
Professor in Dept. of IT Convergence, Kumoh

National Institute of Tech.
Research interests : Industrial System, 3D Printer

Yong-Hwan Lee

1993 : BS degree in Department

of Electronic Engineering,
Yonsei University

1999 : Ph.D. degree in
Department of Electronic

Engineering, Yonsei University
2004 ~ present : Professor in

School of Electronic Eng., Kumoh National Institute
of Tech.

Research interests : SoC, Vision control, Embedded
system, Fast serial interface

	FPGA Design for Implementation of Analog Output Board with Eight Voltage Output Channels
	Abstract
	요약
	Ⅰ. Introduction
	Ⅱ. Related Works
	Ⅲ. Register Map
	Ⅳ. System Structure
	Ⅴ. Experimental Results
	Ⅵ. Conclusion
	References

