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Ⅰ. Introduction

The continuous and discrete Lyapunov equations 
have been generally employed in diverse fields of 
engineering and control theory. In many applications 
of signal processing and control system analysis, it is 
necessary to estimate bounds of the solutions for these 
equations [1]. As one of the research work for control 
system analysis, Y.-M. Kim and W.-B. Baek extended 
the research to adaptive sliding mode control for 

quadrotor with feedback linearization method [2]. 
Including this study,  numerous jobs have been 
devoted to estimate the extent or size of the solutions 
for these equation during the past three decades 
[2]-[5]. However, the literature for this topic has had 
some deficiency. For the discrete Lyapunov equation, 
most of the upper bounds and lower estimates of the 
solution are established on the assumption of 


     unfortunately [4]-[18]. By utilizing the 

similarity transformation [3], firstly provided some 
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Abstract

In this research, the work to discrete bounds is extended and improved without the assumption that the system is 
asymptotically stable. Because attaining the solution itself causes a very massive computational load in case that the 
dimension of the system matrices is raised, using reasonable bound estimates is fair enough to apply. Thus bounds 
for the trace and largest eigenvalues are presented and special attention is located on the upper bound estimates for 
the trace because of their usefulness in robust stability and performance investigation. For the discrete Lyapunov 
equation, we can achieve some improved upper and lower bound estimates of the solution using the majorization 
inequality. And the previous research results are improved and generalized with these bounds. 

요  약

이 연구에서는 이산 경계치들에 대한 작업이 시스템이 점근적으로 안정하다는 가정없이 확장되고 개선되었

다. 솔루션 자체를 얻는 과정이 시스템 행렬들의 차수를 증가시킴에 따라 매우 큰 계산 부담을 발생시키기 때

문에 적절한 경계 추정치들을 이용하는 것은 충분히 적용가능하다. 그러므로 트레이스와 최대 고유값에 대한 

경계치들이 제시되었고 강인 안정성과 성능 해석에서의 중요성 때문에 특별한 주의가 트레이스의 상한 경계치

에 주어졌다. 이산시간 리아푸노프 방정식에 대해 주요화 부등식을 이용하여 솔루션의 상한과 하한 경계 추정

치들을 얻을 수 있다. 그리고 이전의 연구결과들을 이 경계치들로 일반화하고 개선하였다.
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discrete upper bound estimates not having the 
presumption that the system is asymptotically stable, 
, 

    . Lee et al. investigated some 

bounds for unified and continuous Lyapunov matrix 
equation [6][7]. Hyun et al. performed the bound 
estimates for stochastic unified system [8]. In this 
paper, by adopting the virtue of the similarity 
transformation of [3], new and fine bound estimates of 
the solution are developed without the assumption of 


     for the discrete Lyapunov equation. 
These upper bounds are tighter than the results of [3]. 
Furthermore, we also obtain some new lower bounds. 
In addition, we give some numerical examples to 
demonstrate the merit of the proposed results.

Ⅱ. Main Results

2.1 Preliminary Results

In the next,   ×   is represented for the set of 
×  real matrices. For ∈  ×  , let   
denote the trace of  . Suppose ∈  ×  be an 
random symmetric matrix, afterward we presume that 
the eigenvalues of   are organized so that 
 ≥  ≥⋯≥   . 

Lemma 1[19, p7-12]: If the components of   and 
  are nonnegative integers, then the following 
conditions are equivalent:

(i)   can be derived from   by a finite number of 
transfers.

(ii) the sum of the  largest components of   is 
less than or equal to the sum of the  largest 
components of      … , with equality when 
  .

(iii)

  

 

 ⋯ 

 ≤ 


 

 

 ⋯ 

   

                                             (1)

whenever each    . Here ∑  denotes summation 
over all permutations.
For  ∈  ,

   if 
  



 ≤ 
  



     …     (2)

when    ,   is said to be majorized by  . Then 
  is called weakly majorized by   and   is signaled 
by     . This notation and terminology was 
introduced by Hardy, Littlewood, and Polya [20]. The 
next lemmas are employed to demonstrate the 
principal results.

Lemma 2[21, p49]: If   ∈  ×   are symmetric 
matrices and  ≤  ⋯  ≤ , then for    
 ⋯ ,


  




  ≤ 

  




 

  




        (3)

Especially, we have


  



   ≤ 
  



              (4)

with equality when   .

Lemma 3[21, p49]: If   ∈  ×   are symmetric 
matrices and  ≤  ⋯  ≤ , then for   

 ⋯ ,


  




  ≤ 

  




 

  



     (5)

Especially, we have


  



    ≤


  



      

         (6)  

  
with equality when   .



Journal of KIIT. Vol. 18, No. 8, pp. 63-71, Aug. 31, 2020. pISSN 1598-8619, eISSN 2093-7571 65

Lemma 4[21, p48]: If   ∈  ×   are symmetric 
positive semidefinite matrices and  ≤  ⋯

  ≤ , then for     ⋯ ,


  




   ≤ 

  






≤ 
  






          (7)

Especially, we have


  



     ≤ 
  



  

≤ 
  



   

  (8)

and


  



    ≤ 
  



 

≤ 
  



  

           (9)

with equality when   .

Lemma 5[19, p160, B.7 eq(9)]: If  ≥⋯≥ , 
 ≥⋯≥  and     , then for any real array 
 ≥⋯≥  ≥  ,


  



 ≤ 
  



     ⋯           (10)

Lemma 6[12]: Let ∈  ×  , and      
where   is orthogonal and  is diagonal with 
 ≤    . Then

     ⋯                  (11)

2.2 The upper bound estimates of the solution

for Lyapunov equation

Consider the discrete Lyapunov equation

                               (12)

For making up for the example that 
    is 

not within the circle of radius 1, we should establish 
the next alternation. Applying the similarity conversion 
[6 eq.(14)]-[21 p56], we set

                  (13)

Then the modified Lyapunov equation is obtained

 
                            (14)

where 


   .

Then the previous works for bound estimates is 
valid. Using equation (13) and the above lemmas, the 
next theorems can be attained.

Theorem 1: If the discrete Lyapunov equation (12) 

is applied and 


   , then we attain the 

following inequality as


  



   ≤ 
  




  


 

 
 

          (15)

where      and   is the transformation 
matrix in equation (13).

<Proof> From Komaroff’s work [12], the solution to 
equation (14), using integer  , is

  
  

∞

 

 

   

⋯   

                                            (16)

For notational convenience, set  
 , then


  

 
                   (17)
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Applying Lemma 2 to equation (16), in view of 
equation (17) and Lemma 4, we have


  




 ≤ 

  




 


 ⋯ 

≤ 
  




   

 
  ⋯ 

 (18)

Considering  
   , Lemma 6 can be employed 

in equation (18) to obtain


  




 ≤ 

  




   


  


      (19)

From     and    , it is easy to know 
that


  

   
   

    (20)  

                                           
and

 
    

      

  
 

 (21)

Then equation (19) can be rewritten as follows:


  




  ≤ 

  




     




 


   

                                            (22)

From

  


 


≥   


 


≥⋯

≥    


 


 (23)

and

   ≥    ≥⋯≥       (24)

we can obviously recognize that

     


 


≥

     


 


≥⋯≥

      


 


        (25)    

   
For notational convenience, set    

  and 

   
    




 


. From equation (22) 

and (25), we know

    ⋯         ⋯      (26)

Since  ≥  ≥⋯≥   ≥  , in view of 
Lemma 5, we have


  



 
  ≤ 

  




  


 

 
  

  (27)

Applying Lemma 4 to equation (27), we have


  



   
  



    
  



 


≤ 
  



 
  ≤ 

  




   






 
 

  (28)

Note that   


    


  . This 

completes the proof.

Corollary 1: For the discrete Lyapunov equation 

(12), if 


   , then we have


  



  ≤ 
  




  




 


   

 ≤ 
  




  




 


     (29)

Furthermore, we have

 ≤
  






  



 
         (30)



Journal of KIIT. Vol. 18, No. 8, pp. 63-71, Aug. 31, 2020. pISSN 1598-8619, eISSN 2093-7571 67

<Remark> The bounds of equation (29) and (30) were 
presented in [3]. Therefore the result of [3] can be 
generalized by Theorem 1. And Theorem 1 also offers 
a improved bound estimate of the solution.

Theorem 2: For the discrete Lyapunov equation 
(11), we have


  



  ≤







  




  

 
 

 
  






     (31)

<Proof> Using the arithmetic-mean geometric-mean 
inequality [19, p125-126] on equation (15) leads 
directly to the above bound. If     for 
   … , then

    
≤ 

 
                (32)

equation (32) leads equation (15) to equation (31) as 
follows:


  



   ≤ 
  



  

≤







  




  




 
  






         (33)  

                                    

2.3 The lower bound estimates of the solution

for Lyapunov equation

In this section, by utilizing the majorization 
transformation, some lower bound estimates of the 
solution can be obtained for the discrete Lyapunov 
equation without the presumption of     .

Theorem 3: Let the positive definite matrix  be 
the solution to equation (12). If 

    , then 

we have


  



   ≥





 

  



   

 ≥






 

  

                                            (34)

<Proof> For  
, we have


  



    
  



  
      (35)

By Lemma 3, we obtain


  



  
 ≥ 

  



  
 


  



  
  

  



  


 


  



  
 

       (36)

Applying Lemma 4 to equation (36), we have


  



   ≥     (37)


  



  


  
 

  



  
   

From equation (37), we know


  



   ≥




 
  



   
  



  

     (38)

Then
 

  
 

  
  



  
 ≥ 

  



  
     

                                            (39)

Considering 


   , from equation (20) and 

(21), equation (39) can be rewritten as follows:
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
  



    ≥


  


 



  



   

      (40)  

                      
In view of Lemma 4, we have


  



    ≤ 
  



   


≤  
  



  

  (41)

Applying equation (41) to equation (40), we obtain


  



   ≥


   




 

  



   

     (42)  

                   
when   , we have

 ≥






              (43)

Note that    
 . This completes the 

proof.

Ⅲ. Numerical Examples

3.1 Example 1

Consider the discrete Lyapunov equation (12) with 
system matrix   in [6 eq.(42)]

  

 


 
  



  



 
 



.

Then the eigenvalues of   are given by

    

    

                        (44)

In order to overcome the difficulty that     
is unstable, we introduce the similarity transformation 
matrix  . For this example, we choose 

 


 
  



. Afterward we can have the 

Jordan-converted matrix and its eigenvalues as







 
 








   


  

      (45)

Now, we eliminate the assumption of 


  . 

Using Theorem 1, we have

 ≤   ≤           (46)

Using Theorem 2, we obtain the following determinant 
bound

 ≤                             (47)

From Theorem 3, we have

  ≥    ≥           (48)

Using Theorem 1 of [3], we have

 ≤                          (49)

Using Theorem 2 of [3], we have

   ≤                          (50)

By comparison, we know equation (46) is better than 
equation (49) and (50).  

3.2 Example 2

Consider the discrete Lyapunov equation (12) with
  

 


 

 


  



 
 



 .
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Then the eigenvalues of   are given by

    

    

                        (51)

In order to overcome the difficulty that     

is unstable, we introduce the similarity transformation 
matrix  . For this example, we choose   


 
  



. Afterward we can have the 

Jordan-converted matrix and its eigenvalues as







   
  








   


  

      (52)

Now, we eliminate the assumption of 


  . 

Using Theorem 1, we have

  ≤    ≤         (53)

By Theorem 2, we obtain the following determinant 
bound

 ≤                           (54)

From Theorem 3, we have

  ≥    ≥             (55)

Using Theorem 1 of [3], we have

  ≤                          (56)

Using Theorem 2 of [3], we obtain

  ≤                          (57)

By comparison, we know equation (53) is better than 
equation (56) and (57).

Ⅳ. Conclusions

One of essential problem for system stability 
analysis is the evaluation of the solution for the 
Lyapunov equation. Inspired by this issue, in the 
coverage of this paper, investigation of stability 
analysis for the solution of discrete Lyapunov equation 
is performed. By using similarity transformation of [3], 
we have proposed some new bounds which are 
extended with removal of the assumption of 


    . Compared with the results of [3], the 

obtained upper bounds are tighter. The results of [3] 
shows that   ≤    ≤ . 
But, the results of this study shows that 
  ≤  . Then, we have the better results 
for upper bounds of trace of the solution of 
Lyapunove equation. Moreover, we give fine lower 
bounds. The work results illustrates that  

≥    ≥  . These lower bounds are 
new. 

For verifying these outcomes, we demonstrate that 
mathematical evidence for better bound estimates of 
solution for the discrete Lyapunov equation from the 
numerical examples. Besides, performing the research 
for robust stability with some existing works would be 
valuable as future study. D. G. Lee[22][23] developed 
the works for robust stability of state feedback control 
with linear perturbation. As another work in stability 
analysis, the robust controller design for computer- 
controlled unified system is suggested by D. Lee and 
W. Lee [24]. Thus, the future study would be 
extended to the works for that of output feedback 
control for discrete-time and unified system. Another 
possible future research topic can be started from the 
research results of D.-G. Lee and I. Hyun [25]. They 
investigated the stochastic optimal controller design of 
decentralized singularly perturbed unified system. We 
consider this work would be extended to the study 
topic of feedback controller design with the case of 
linear perturbation.



70 Improved Bound Estimates for the Solution of the Discrete Lyapunov Equation

References

 [1] Z. Gajic and M. T. J. Qureshi, "Lyapunov 
Matrix Equation in System Stability and 
Control", Academic Press, pp. 79-101, 1995.

 [2] Y. M. Kim and W. B. Baek, "Adaptive Sliding 
Mode Control based on Feedback Linearization 
for Quadrotor with Ground Effect", Journal of 
JAITC, Vol. 8, No. 2, pp. 101-110, Dec. 2018.

 [3] D. Lee, G. Heo, and J. Woo, "New Bounds 
using the solution of the discrete Lyapunov 
equation", International Journal of Control, 
Automation, and Systems, Vol. 1, No. 4, pp. 
459-463, Dec. 2003.

 [4] Y. Fang, K. A. Loparo, and X. Feng, "New 
Estimates for Solutions of Lyapunov Equation", 
IEEE Trans. Automatic Control, Vol. 42, No. 3, 
pp. 408-411, Mar. 1997.

 [5] T. Mori, N. Fukuma, and M. Kuwahara, "Bounds 
in the Lyapunov matrix differential equation", 
IEEE Trans. Automatic Control, Vol. 32, No. 1, 
pp. 55-57, Mar. 1987.

 [6] H. T. Zhang, D. G. Lee, and D. C Oh, "New 
Bounds of the Solution for the Unified Lyapunov 
Matrix Equation", Journal of KIIT, Vol. 9, No. 
3, pp. 1-9, Mar. 2011.

 [7] D. G. Lee, "A Comparative Study for New 
Estimates for Solution of Lyapunov Matrix 
Equation applied to Stability Analysis of 
Singularly Perturbed Systems", Journal of KIIT, 
Vol. 11, No. 1, pp. 35-44, Jan. 2013.

 [8] I. Hyun, M. E. Sawan, D. G. Lee, and D. Kim, 
"Robust stability for decentralized singularly 
perturbed unified system", Proceedings of the 
2006 American Control Conference, Minneapolis, 
MN, USA, pp. 4338-4343, Jun. 2006.

 [9] N. Komaroff, "Upper Bounds for the Eigenvalues 
of the Solution of the Lyapunov Matrix 
Equation", IEEE Trans. Automatic Control, Vol. 
35, No. 6, pp. 737-739, Jun. 1990.

[10] T. Mori, N. Fukuma, and M. Kuwahara, "Bounds 

in the Lyapunov matrix differential equation", 
IEEE Trans. Automatic Control, Vol. 30, No. 9, 
pp. 925-926, Sep. 1985.

[11] J. Garloff, "Bounds for the Eigenvalues of the 
Solution of the Discrete Riccati and Lyapunov 
Equation and the Continuous Lypunov Equation", 
International Journal of Control, Vol. 43, No. 2, 
pp. 423-431, May 1985.

[12] N. Komaroff, "Upper Bounds for the Eigenvalues 
of the Solution of the Discrete Lyapunov Matrix 
Equation", IEEE Trans. Automatic Control, Vol. 
35, No. 4, pp. 468-469, Apr. 1990.

[13] C. H. Lee, "Upper and Lower Matrix Bounds of 
the Solution for the Discrete Lyapunov equation", 
IEEE Trans. Automatic Control, Vol. 41, No. 9, 
pp. 1338-1341, Sep. 1996.

[14] T. Mori, N. Fukuma, and M. Kuwahara, "On the 
Discrete Lyapunov Matrix Equation", IEEE 
Trans. Automatic Control, Vol. 27, No. 2, pp. 
463-464, Apr. 1982.

[15] T. Mori, N. Fukuma, and M. Kuwahara, "On the 
Discrete Riccati Equation", IEEE Trans. 
Automatic Control, Vol. 32, No. 9, pp. 828-829, 
Sep. 1987.

[16] N. Komaroff, "Lower Bounds for the Solution of 
the Discrete Algebraic Lyapunov Equation", IEEE 
Trans. Automatic Control, Vol. 37, No. 7, pp. 
1017-1018, Jul. 1992.

[17] N. Komaroff and B. Shahian, "Lower Summation 
Bounds for the Solution of the Discrete Riccati 
and Lyapunov Equation", IEEE Trans. Automatic 
Control, Vol. 37, No. 7, pp. 1017-1018, Jul. 
1992.

[18] M. Mrabti and A. Hmamed, "Bounds for the 
Solution of the Lyapunov Matrix Equation-A 
Unified Approach", System Control Letters, Vol. 
18, No. 1, pp. 73-81, Jan. 1992. 

[19] A. W. Marshall, I. Olkin, and B. C. Arnold, 
"Inequalities: Theory of Majorization and its 
Applications", Springer-Verlag, New York, 2011.

[20] G. H. Hardy, J. E. Littlewood, and G. Polya, 



Journal of KIIT. Vol. 18, No. 8, pp. 63-71, Aug. 31, 2020. pISSN 1598-8619, eISSN 2093-7571 71

"Inequalities", Cambridge University Press, 1952.
[21] F. Zhang, "The Schur Complement and its 

Applications", Springer Verlag, New York, 2010.
[22] D. G. Lee, "System Stability Analysis for 

Decentralized Singularly Pertrurbed Systems", 
Ph.D. Dissertation, Wichita State University, 
Wichita, USA, pp. 34-36, Dec. 2001.

[23] D. G. Lee, "A Comparative Study for Robust 
Stability of State Feedback Control for 
Discrete-time and Unified System", Journal of 
KIIT, Vol. 13, No. 12, pp. 33-45, Dec. 2015.

[24] W. S. Lee and D. G. Lee, "Robust Control using 
Output Feedback Control of Unified System", 
Journal of KIIT, Vol. 6, No. 6, pp. 14-19, Dec. 
2008.

[25] D. G. Lee and I. Hyun, "Stochastic Optimal 
Controller Design of Decentralized Singularly 
Perturbed Unified Systems", Journal of KIIT, 
Vol. 14, No. 12, pp. 33-45, Dec. 2016.

Authors

Dong-Gi Lee

1993 : BS degree in Department

of Electronic Engineering,
Dongguk University

1995 : MS degree in Department
of Electronic Engineering,

Dongguk University
1999 : MS degrees in Department

of Electrical Engineering, Wichita State University,
USA.

2001 : PhD degrees in Department of Electrical
Engineering, Wichita State University, USA.

2002 ~ 2011 : Professor, Dep. of Electronics &
Information Engineering, Konyang University, Korea

2012 ~ present : Professor, Dep. of Biomedical
Engineering, Konyang University, Korea

Research interests : unified approach, optimal control,
robust control, singular perturbation system,

stochastic system

Inha Hyun

1989 : BS degree in Department
of Mechanical Engineering,

Korea Air Force Academy
1996 : MS degrees in Department

of Electrical Engineering,
Wichita State University, USA.

2006 : PhD degrees in
Department of Electrical&Computer Engineering,

Wichita State University, USA.
2007 ~ 2014 : Information & Communications Office,

Korea Air Force Headquaters, Gyeryoung, Korea
2015 ~ 2017 : Korea Air Force Logistics Command,

Daegu, Korea
2018 ~ present : Information & Communications Office,

Korea Air Force Headquaters, Gyeryoung, Korea

Research interests : cmmunication system, unified
approach, optimal control, robust control, singular

perturbation system, stochastic system


	Improved Bound Estimates for the Solution of the Discrete Lyapunov Equation
	Abstract
	요약
	Ⅰ. Introduction
	Ⅱ. Main Results
	Ⅲ. Numerical Examples
	Ⅳ. Conclusions
	References


