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Improved Bound Estimates for the Solution of the Discrete
Lyapunov Equation

Dong-Gi Lee*, Inha Hyun**

Abstract

In this research, the work to discrete bounds is extended and improved without the assumption that the system is
asymptotically stable. Because attaining the solution itself causes a very massive computational load in case that the
dimension of the system matrices is raised, using reasonable bound estimates is fair enough to apply. Thus bounds
for the trace and largest eigenvalues are presented and special attention is located on the upper bound estimates for
the trace because of their usefulness in robust stability and performance investigation. For the discrete Lyapunov
equation, we can achieve some improved upper and lower bound estimates of the solution using the majorization
inequality. And the previous research results are improved and generalized with these bounds.
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|, Introduction quadrotor with feedback linearization method [2].
Including this study,  numerous jobs have been
The continuous and discrete Lyapunov —equations devoted to estimate the extent or size of the solutions
have been generally employed in diverse fields of for these equation during the past three decades
engineering and control theory. In many applications [2]-5]. However, the literature for this topic has had
of signal processing and control system analysis, it is some deficiency. For the discrete Lyapunov equation,
necessary to estimate bounds of the solutions for these most of the upper bounds and lower estimates of the
equations [1]. As one of the research work for control solution are established on the assumption of
system analysis, Y.-M. Kim and W.-B. Baek extended M(AAT)<1 unfortunately [4]-[18]. By utilizing the
the research to adaptive sliding mode control for similarity transformation [3], firstly provided some
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discrete upper bound estimates not having the
presumption that the system is asymptotically stable,
ie., M(AAT)<1. Lee et al investigated some
bounds for unified and continuous Lyapunov matrix
equation [6][7]. Hyun et al. performed the bound
estimates for stochastic unified system [8]. In this
paper, by adopting the virtue of the similarity
transformation of [3], new and fine bound estimates of
the solution are developed without the assumption of
Al(AA T)<1 for the discrete Lyapunov equation.
These upper bounds are tighter than the results of [3].
Furthermore, we also obtain some new lower bounds.
In addition, we give some numerical examples to

demonstrate the merit of the proposed results.
II. Main Results
2.1 Preliminary Results

In the next, R"™" is represented for the set of
nxn real matrices. For ASR™ ", let tr(A)
denote the trace of A. Suppose ASR"™™ be an
random symmetric matrix, afterward we presume that
the eigenvalues
M (A4) = N (4) == ), (A).

of A are organized so that

Lemma 1[19, p7-12]: If the components of z and
y are nonnegative integers, then the following

conditions are equivalent:

(i) « can be derived from y by a finite number of
transfers.

(i) the sum of the k largest components of z is
less than or equal to the sum of the % largest
components of y, k=1,2,
k=n.

(iii)

...n, with equality when

whenever each «; > 0. Here > denotes summation
over all permutations.
For =z, yER",

k k
x <y if Ex[z] < Zy[z’L k=1,2, ..,n (2)

i=1

when x <y, x is said to be majorized by y. Then
x is called weakly majorized by y and x is signaled
by x<,y. This notation and terminology was
introduced by Hardy, Littlewood, and Polya [20]. The
next lemmas are employed to demonstrate the

principal results.

Lemma 2[21, p49]: If 4, BER"™" are symmetric
matrices and 1 < i, <---<i, <n, then for k=1,

k k k
DN (A+B) = 3N, (A)+ 30N, (B) ()
t=1 t=1 t=1

Especially, we have

k k
(A1B) = N[\ A (B)] )
z':l i=1

with equality when k=mn.

Lemma 3[21, p49]: If 4, BER"™" are symmetric
matrices and 1 < i, <---<4, <mn, then for k=1,

2, -y,

k k
YN (A+B) < DN (4)+

t=1 t=1 t=1

~

Especially, we have

i —i+1 A+B> (6)

M4

i=1

)+ —ia(B)]

with equality when k=mn.
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Lemma 4[21, p48]: If A, BER"™" are symmetric

positive  semidefinite  matrices and 1 <, <---
<i, <mn, then for k=1,2, --,n,

k k

S (AN, (B) = YN, (45) )

t=1 t=1

< Xk])\if(A)/\t(B)

Especially, we have

k |
SN, (B) = 3N (48) ©)

with equality when k= n.

Lemma 5[19, pl60, B.7 eq9)]: If 2z, =---> =z,
y, ==y, and x <, y, then for any real array

Uy = =wu, =0,

k k
Z Z% 'l = 7 7"’7TL (10)

Lemma 6[12]: Let A=R"“", and A= U"AU
where U is orthogonal and A is diagonal with
0 < )\, (A) <1. Then

(I—A) ' =1+ A+ A%+ (11)

2.2 The upper bound estimates of the solution
for Lyapunov equation

Consider the discrete Lyapunov equation

P—ATPA— Q=0 (12)

For making up for the example that AI(AA ) s

not within the circle of radius 1, we should establish
the next alternation. Applying the similarity conversion
[6 eq.(14)]-[21 p56], we set

P=UTPU, Q= UTQU, A= U 'AU (13)
Then the modified Lyapunov equation is obtained

P-A"PA-Q=0 (14)
where )\I(ZZT)< 1

Then the previous works for bound estimates is
valid. Using equation (13) and the above lemmas, the

next theorems can be attained.

Theorem 1: If the discrete Lyapunov equation (12)
is applied and Al(ZZT)< 1, then we attain the

following inequality as

k k
2A(P) Z:] 9 ~(~T)) (15)

i=1 1A, 1+1([_AA

where E=U TU ' and U is the transformation
matrix in equation (13).

<Proof> From Komaroff’s work [12], the solution to

equation (14), using integer I, is

-1

=0

") 0a° +-.
(16)

oA =0+a"0a+(a

For notational convenience, set B= ;LZT, then

M (AN 0d)=x08Y (17)
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Applying Lemma 2 to equation (16), in view of

equation (17) and Lemma 4, we have

SA(P= Sh@aler)-] oy

i=1 i=1

kl ~
= 0@ [1+7(B)+ (B ]
i=1

Considering \;(B) <1, Lemma 6 can be employed

in equation (18) to obtain

[1-a(2a")]" (19)

SIA(P)< I0(2)

i=1 i=1

From P= U”TPU and Q= UTQU, it is easy to know
that

M P)=2(UTPU)= ) (UUTP)=)(E"'P) (20)
and
X (Q) =0 (U"QU) = ) (UT"Q) 1)
- )‘i (EilQ)

Then equation (19) can be rewritten as follows:

k

Xk])‘i 1PSZ [ B

i=1 i=1

A (aah] ™

(22)

From

(1= a")] " = [1-x@a")] = @)
> [1-a,22M)]"

and
METQ) = METQ) ==\, (F7'Q) (24)

we can obviously recognize that

1
M(EQ)[1-2,aa"] = (25)
MNEIQ1-2aa7)] =
A\ (EQ) 1=, (4]

For notational convenience, set =; =\, (F~'P) and

v, =\N(E'Q) [1* (44 )] ", From equation (22)
and (25), we know
w= (25 w,) <, y=(y,9 - y,) (26)

Since A, (E) = )\, (E) >=--

Lemma 5, we have

>\, (E) =0, in view of

Zk:)‘i(Efl ) < Z Q~)~;> !

27)
i=1 i=1 1— /\<AA

Applying Lemma 4 to equation (27), we have

k k k
Nox(P) =Y\ (PEE! =ZA1 E'PE)  (28)
i=1 i=1 i=
k EXN(E'QN(E
<Y\ (E'P)N(B) < Zz(—iji)
i=1 i=1 1-),(44")
Note that 1—\ (AA ) A, 1+1([ .Z.:lT) This

completes the proof.

Corollary 1: For the discrete Lyapunov equation
(12), if A,(A27)< 1, then we have

Xk:Ai(P) < AI(E)Xk] ME ?)~T (29)
i=1 i=1\,_;,(I—AA4")

when k=n,

tr(P) < /\I(E)i ME QL))~T
izl)\n,iJrl([_AA )

Furthermore, we have

- 2&@*%)) (30)
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<Remark> The bounds of equation (29) and (30) were
presented in [3]. Therefore the result of [3] can be
generalized by Theorem 1. And Theorem 1 also offers

a improved bound estimate of the solution.

Theorem 2: For the discrete Lyapunov equation
(11), we have

k k k
I (P Z} 9 ~(~T>) (31)

i A, Hl(1 A4

<Proof> Using the arithmetic-mean geometric-mean
inequality [19, pl25-126] on equation (15) leads
directly to the above bound. If X,(P)>0 for

1=1, ...,n, then

1/n )‘7' (P>

(ITx ()" = 3= (32)
equation (32) leads equation (15) to equation (31) as
follows:

k k

LI (P) = XN (P) (33)

—1 k
_ % Xk] N (ETQ) ~(~ T)

2.3 The lower bound estimates of the solution
for Lyapunov equation

In this section, by utilizing the majorization
transformation, some lower bound estimates of the
solution can be obtained for the discrete Lyapunov

equation without the presumption of A, (A4A47) < 1.

Theorem 3: Let the positive definite matrix P be
the solution to equation (12). If )\I(AA 7)< 1, then

we have

k )\ E k
Z n— z+1 - ( Z n—i+1 E Q)
i=1 ([—AA )L:
(P) = A"@T w(EQ)
A\ (I—=447)

(34)

<Proof> For P= A PA+ @, we have

k k

Z)‘nferl(P):2)‘7172+1(;1ij4+ @> (35)

i=1 i=1

By Lemma 3, we obtain

k k
S (P)= Z . (a"pa) (36)
1:1k i=1 . o
+Z n— z+1( ) Z 1+1( P)
k ~
+Z>\n7i+1(Q)

i=1

Applying Lemma 4 to equation (36), we have

k
IR (37
k - k ~
Z n— z+1(AA >\n L+1(P>+Z)‘n7i+1<Q>
i=1 i=1
From equation (37), we know
k ~
DA ia(P) = (38)
71(;1;1 )EAn 7+1 +Z)‘n 7+1 @
Then
k k
{1 /\( )]Z n— z+1( ) Z 1L+1( )
(39

Considering /\H(ZZT)< 1, from equation (20) and

(21), equation (39) can be rewritten as follows:
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k

Y (B7'P) = (40)

i=1

M»

—_— (B~
Y (AA )7:1 —i+1 'Q)

In view of Lemma 4, we have

1P g Z)\n /+1 / Eil) (41)

Il
—

H
—

Applying equation (41) to equation (40), we obtain

S (42)

i=1

when £ =n, we have

w(p) > —D g 3)
A (=447

Note that A\ (B ') =\ "(F).

n

This completes the
proof.

lI. Numerical Examples

3.1 Example 1

Consider the discrete Lyapunov equation (12) with

system matrix A in [6 eq.(42)]

~ [0.7563 0.8564 [10
A= 0.3536—0.7856]’ @= [01}'

Then the eigenvalues of AA 7 are given by

A\ (A44T)=15174 (44)
A, (447) =0.5302

In order to overcome the difficulty that X, (A4A47)

is unstable, we introduce the similarity transformation
matrix ~ U. For this

1.9359 0.2045
0.2312 —1.1352

Jordan-converted matrix and its eigenvalues as

example, we  choose

U :[ } Afterward we can have the

~~7_ [0.8915 0.0654
A= {0.0654 0.9072]

A(A47)=0.9653, \,(247)=0.8335

(45)

Now, we eliminate the assumption of )\1<;1;1T>< 1

Using Theorem 1, we have
A (P) < 82,9450, tr(P) < 85.0316 (46)

Using Theorem 2, we obtain the following determinant

bound
| P| < 84.0335 47)
From Theorem 3, we have

A, (P) = 2.0867, tr(P) = 8.0919 (48)
Using Theorem 1 of [3], we have

tr(P) < 111.7665 (49)
Using Theorem 2 of [3], we have

tr(P) < 88.9502 (50)

By comparison, we know equation (46) is better than
equation (49) and (50).

3.2 Example 2
Consider the discrete Lyapunov equation (12) with

A= [0.2539 0.5810} 0= [1 0]

0 08958]" ¥ [01]"
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Then the eigenvalues of AA 7 are given by

A (A4A4T) =1.1599 (51)
A\, (44 7) =0.0446

In order to overcome the difficulty that A, (A4A47)

is unstable, we introduce the similarity transformation
matrix U. For this example, we choose U=

[0.9232 0.0787
0.2141 —0.2140

Jordan-converted matrix and its eigenvalues as

]. Afterward we can have the

~=~T
A= —0.3262 0.7387 (52)

A (247)=0.8950, \,(247)=0.0578

0.2141 *0.3262}

Now, we eliminate the assumption of )\1(;1;1T)< 1.

Using Theorem 1, we have
A (P) < 167.3835, tr(P) < 167.4438 (53)

By Theorem 2, we obtain the following determinant
bound

| P| < 167.3844 (54)
From Theorem 3, we have

A, (P) = 0.0604, tr(P) > 1.1217 (55)
Using Theorem 1 of [3], we have

tr(P) < 176.9051 (56)
Using Theorem 2 of [3], we obtain

tr(P) < 168.4448 (57)

By comparison, we know equation (53) is better than
equation (56) and (57).

IV. Conclusions

One of essential problem for system stability
analysis is the evaluation of the solution for the
Lyapunov equation. Inspired by this issue, in the
coverage of this paper, investigation of stability
analysis for the solution of discrete Lyapunov equation
is performed. By using similarity transformation of [3],
we have proposed some new bounds which are
extended with removal of the assumption of
A (A447)< 1. Compared with the results of [3], the
obtained upper bounds are tighter. The results of [3]
shows that #r(P) < 111.7665, tr(P) < 88.9502.
But, the results of this study shows that
tr(P) < 85.0316. Then, we have the better results
for upper bounds of trace of the solution of
Lyapunove equation. Moreover, we give fine lower
bounds. The work results illustrates that X\ (P)
> 2.0867, tr(P) > 8.0919. These lower bounds are
new.

For verifying these outcomes, we demonstrate that
mathematical evidence for better bound estimates of
solution for the discrete Lyapunov equation from the
numerical examples. Besides, performing the research
for robust stability with some existing works would be
valuable as future study. D. G. Lee[22][23] developed
the works for robust stability of state feedback control
with linear perturbation. As another work in stability
analysis, the robust controller design for computer-
controlled unified system is suggested by D. Lee and
W. Lee [24]. Thus, the future study would be
extended to the works for that of output feedback
control for discrete-time and unified system. Another
possible future research topic can be started from the
research results of D.-G. Lee and I. Hyun [25]. They
investigated the stochastic optimal controller design of
decentralized singularly perturbed unified system. We
consider this work would be extended to the study
topic of feedback controller design with the case of

linear perturbation.
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