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Ⅰ. Introduction

Devising a feedback controller has been studied 
very sincerely because it was presumed that all state 
variables are attainable for state monitoring [1]-[5]. Y. 
M. Kim and W. B. Baek extended the research to 
adaptive sliding mode control for quadrotor with 

feedback linearization method [6]. Nevertheless, some 
states are not perceptible in many utilizations. In other 
words, adequate sensors for guaging these states 
presently are not found. In case that the states for 
system are not feasible, then a state observer is put to 
use of evaluating the initial system states. 
Occasionally, indeed when materializing optimal 
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Abstract

In this research, devising a Kalman filter is carried out to surmount or eliminate the noise enclosed in system 
signals. This Kalman filter is an optimal appraiser of the state, where optimal is prescribed in relation with reducing 
the mean square assessment error. Optimal observer with reduced-order is suggested for the decentralizied 
discrete-time system, and a unique optimal observer is developed for the unified decentralized system where 
reduced-order is used. The reduced-order steadying observer is also obtained by the Riccati equation method. The 
research literature has not still disclosed research results for this reduced-order unified optimal observer issue for the 
decentralized singularly perturbed system. For verifying these outcomes, we demonstrate that mathematical evidence 
for optimal observers attained from the examples of discrete-time, and unified system. 

요  약

이 논문에서는 시스템 신호에 포함된 잡음을 극복 또는 제거하기 위해 칼만 필터 개발 과정이 수행되었다.
칼만은 평균 자승 추정오차의 감소에 관련하여 최적화가 규정되는, 최적 상태 감정기이다. 축소차수를 가지는 

최적 관측기가 분산 이산시간 시스템에 대해 제안되었으며 또한 축소차수가 사용된 단일 분산 시스템에 대한 

유일한 최적 관측기가 개발되었다. 축소차수 안정화 관측기는 또한 리카티 방정식 방법에 의해서도 도출되었

다. 연구 문헌들은 아직까지 이 분산 특이변동 시스템의 축소차수 단일 최적 관측기 주제에 관한 연구 결과를 

밝힌 바가 없다. 이 결과들을 검증하기 위해 이산시간, 그리고 단일 시스템의 예제들로부터 획득된 최적 관측

기들에 대한 수학적 증거를 실증하였다.

Keywords
stochastic system, Kalman filter, unified optimal observer, decentralized singularly perturbed system

http://dx.doi.org/10.14801/jkiit.2020.18.7.29

https://crossmark.crossref.org/dialog/?doi=10.14801/jkiit.2020.18.7.29&domain=http://ki-it.com/&uri_scheme=http:&cm_version=v1.5


30 Optimal Observer of a Stochastic Decentralized Singularly Perturbed Unified System

control, system efficiency is yet intolerable. One of 
the essential causes for this is that dynamic systems 
are stimulated not only by the allowed control input 
but also by disruption signals. These signals incur the 
system type being stochastic [7]. To remove or get rid 
of the signal noise involved in system signals, a 
Kalman filter is required to be formulated. The 
Kalman is an optimal evaluator of the state, where 
optimal is established on the basis of lessening the 
error of mean square assessment. Settling the observer 
is of concern to many academic investigators [8]-[11]. 
H. Do and J. Oh introduced a study on smartphone 
indoor navigation technology using extended Kalman 
filter [12].

In this work, reduced-order optimal observers are 
proposed for the decentralized discrete-time system, 
and a exclusive optimal observer is suggested for the 
decentralized reduced-order unified system are 
obtained. The reduced-order steadying observer will be 
acquired by the Ricccati equation method too. The 
academic literature has not still acknowledged this 
reduced-order unified optimal observer issue for the 
decentralized singularly perturbed system.

Ⅱ. Main Results

2.1 Discrete-Time Systems

 2.1.1 Optimal Observer Acquisition  

For the stochastic decentralized discrete-time system 
[12], consider the following system model acquired in 
[5].

          (1)
        

 

where  ∈   is the state vector of the system, 

 ∈  and  ∈   are the system input and 
output vectors, respectively. The matrices  

, and   are constant matrices of appropriate 
demensions. Independent vectors of Gaussian noise are 
 ∈  and  ∈  with zero mean and 
intensity   and  , respectively.

In this case of a discrete-time system, original 
system noise and noise for state monitoring are 
presumed to be white Gaussian noise having zero 
mean ∑   and intensity ∑  . The correlation 
function is described as

        

  
   ∑

  
   ∑

  
     

   

  (2)

In accordance with stochastic control method for 
observers [14], a state evaluator is able to be 
formulated for individual subsystem. Because the 
control input    is deterministic, the state 
evaluator can be described as

   
    

    

   (3)   

      

where         

   
 

Then we have the goal here to discover the optimal 
observer gain    that eliminate the noise 
involved in the system output signals. Here, we adapt 
the orthogonality priciple [14]:

A necessary condition for a linear estimate to be 
optimal is that the estimation error be orthogonal(in 
the probabilistic sense) to al of the data:

    f or                          (4)

Utilizing the orthogonality principle indicates that

    
             (5)
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where          .

Using    into equation (5) gives

    
 

        
 

     
  

   
   

  (6)

Considering   is optimal, 
    

     for   . As 
original system noise and state monitoring noise are 
uncorrelated with past state monitoring, 
  

    
   . So, the 

orthogonality principle is validated to all data such 
that   . For   ,

    
   (7)

 






 

  
  

         
 ∑

   
 

         
 ∑



Associating these outcome generates

    
  

   ∑ 
 

  ∑
  ∑



 (8)

Then, the optimal observer gain is given as

   ∑ 
 ∑

 
 (9)

where 
  ∑ 

 ∑
 ∑ 

 .

Because of the evaluation of the state, the error is 
described as        . Then, the 
following equation is generated as

       

     

       



 

 






 (10)

For a discrete-time system, the following evaluation 
covariance matrix for error is demanded to stipulate 
the Kalman gain. The error model is able to 
determine this covariance matrix. White noise is the 
Input to the error model here. Using this outcome to 
the error model generates

∑       ∑  ∙

    
 

       ∙



∑ 

 ∑








    



   







  (11)

With deploying equation (11), the equation for the 
error covariance matrix    becomes

  ∑
 ∑

 ∑
 ∑  ∙

∑
 ∑

 ∑
  ∙

∑
 ∑  

(12)

Now we have a conclusion that the ∑(optimal 
numerical figure) is achieved by converting the 
presented  Lyapunov equation to the Riccati equation. 
Then the optimal value of ∑  is able to be 
completed by choosing the optimal Kalman gain, 
  ∑

 ∑
 

. From equation 

(12), the optimal covariance matrix of the ∑  is able 
to be acquired by

  ∑
 ∑    (13)

  ∑
 ∙ ∑

 


∙

∑
 

where 
  ∑ ,  ∑

   ∑
 .

Ultimately, we can achieve the optimal stochastic 
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observer equation as follows

   
    

     
 (14)

where  is the optimal stochastic observer parameter, 
and   ∑

 ∑
 

, ∑ 

 .
  In equation (14), ∑  denotes the solution of the 
algebraic discrete Riccati equation.

  ∑
  ∑  ∑

   (15)

∙ ∑
 


∙ ∑

 


2.1.2 Robustness of Steadying Observer

In [5], for devising the steadying optimal 
controllers, the discrete-time Riccati equation was 
applied. In this part, by using the Riccati equation 
method, the steadying observer gain is able to settle 
the observers when the state parameters are not 
attainable for evaluation. If the discrete-time system is

      

      
              (16)

Now we have the closed-loop system as the form of

      

  
 (17)

and the LQ performance index is given by

  






∞






   
  


  




    

                                            (18)

The optimal control for subsystem one is


                           (19)

where    



 

  .

In equation (19),   denotes the solution of the 
fundamental Riccati equation. Then we have

  
      

  
 

∙  
 

 
  

 
  

                                           (20)

The control feedback gain in equation (19) is the 
gain that is able to steady the system equation (16) 
too.
Then, the observer can be described as

      
   

 
 (21)

The poles of the matrix      are the 
observer eigenvalues. And      and 
   

  have the same eigenvalues. So

  
  

  
 

          (22)

The following equation is derived by means of 
applying the similarities between equations (17) and 
(21).

   × 

⇓


  

 × 


                      (23)

Now we can attain the steadying observer gain for 
sub-system one can be attained from

   
 


 

 
⇓


   

 


 
 

(24)  

where
  

    
 

  ∙

 
  ∙ 

 
   .
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So, the 
  can place the poles of the matrix 

   
  inward the circle of the z-plane 

where the radius of the circle is unit. Because the 
sign of transpose does not change the pole placement 
of a matrix, the observer gain   is able to steady 
the matrix     .

2.2 Unified Systems

2.2.1 Optimal Observer Acquisition

By applying delta operator approach [15], a 
stochastic decentralized unified system can be given 
by

        

        

 

   (25)

where  ∆
  

  ∆


  ∆


  

            . And 
 ∈   is the state vector of the system, 

 ∈  and  ∈   are the system input and 

output vectors, respectively. The matrices  

, and   are constant matrices of appropriate 
demensions. Independent vectors of Gaussian noise are 
 ∈  and  ∈  with zero mean and 
intensity  and , respectively.

It can be presumed that the noise to represent 
white Gaussian noise having zero mean ∑    and 
intensity ∑   where the sampling period is ∆ . 
Such noises are presumed to hold the subsequent 
correlation functions.

        

  
  ∑

  
    ∑

  
     

  

  (26)

In accordance with stochastic control method for 
observers [14], a state evaluator is able to be 

formulated for individual sub-system. Because the 
control input    is deterministic, the state evaluator 
can be described as

   
            

                                            (27)

where         

   
 

Then we have the goal here is to discover the 
optimal observer gain   that remove the noise 
involved in the system output signals. With applying 
the optimal observer gain in equation (14), the optimal 
observer gain can be acquired as

  ∆


     (28)

 ∆  ∑
 ∆∑

 


where 
   ∑

 ∑
  ∙               

 ∑
 ∑

 ∑
 



  ∑
 ∆∑

 ∑
 .

From equation (28), the ∑(covariance matrix of the 
error) can be rewritten as subsequent equation

  ∑ ∑
 ∆∑

  (29)

 ∆ ∑
 ∆∑

 ∙
∑

 ∆∑
 ∆∑

 


∙ ∑ ∆  ∆∑
 

  

                                            
Ultimately, we can represent the optimal stochastic 
observer equations as follows

   
             

                                            (30)

where
  ∆ ∑

 ∆∑
 



  ∑
 ∆∑

 ∑

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Fig. 1 illustrates that the reduced-order optimal 
observer in unified system for the ith sub-system.

2.2.2 Robustness of Steadying Observer

Assuming that the unified system is given by

      

      
              (31)

then the closed-loop unified system is written as

             (32)

and the LQ performance index is given by

  





∞






  
  


 




(33)

The optimal control for sub-system one is


                            (34)

where    
 ∆

  


 
 ∆

In equation (34),   denotes the solution of the 
unified Riccati equation. Then we have

  
    ∆    (35)


  

  ∙  ∆
  




  

 

 The control feedback gain in equation (34) is the 
gain that can steady the system equation (31) too. 
 Then, the observer can be described as

      
   

 
   (36)

Now we can recognize that the eigenvalues of 
     and    

  are the 
same, so

   
  

  
 

          (37)

Fig. 1. Optimal observer of a decentralized singularly perturbed unified system with ith reduced-order
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The following equation is derived by means of 
applying the similarities between equations (32) and (36).

   × 

⇓


  

 × 


                      (38)

  The steadying gain of the observer for sub-system 
one can be achieved from

   ∆
  




 

  ∆ 
⇓


   ∆

 


  ∆

 

   (39) 

where
  

   ∆  ∆
 

  ∙

 ∆
  ∙ 

 
 

 

So, the 
  can place the poles of the matrix 

   
  within the circle of the plane with 

the stable region of radius ∆
 . Since the sign of 

transpose does not change the pole placement of a 
matrix. It means that the observer gain  can 
steady the matrix     .

The diagrams illustrating stability region [16] for 
different operators are given in Fig. 2. The variables 
 ,  , and  denote transformed variables in discrete- 
time and unified systems.  

         

                
(a) Discrete-time case (b) Unified case

Fig. 2. Stability region and diagrams for discrete-time and
unified systems

Ⅲ. Numerical Examples

3.1 Discrete-Time Systems

This part proposes the stochastic decentralized 
singularly perturbed system applied to example 3.2 in 
[5]. The subsequent discrete-time system can be 
discovered by being discretization of example 3.1 by 
applying MATLAB function c2d with sampling period 
of . 

 






     

     
     
     





 (40)

   






 



 





    






 
 









       















   

                    

   


 
 



     

  Presume that the noise intensity ∑  ∑    
and the sampling period is  . For sub-system two, 
the original system poles are

 




























  
   





       (41)

  As examined in the example, the decentralized 
discrete-time system is unstable. Fig. 3 illustrates that 
the plot of state response in the open-loop discrete- 
time system.

We can discover the optimal controller for reduced- 
order system as follows.

                        (42)
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Fig. 3. State response for open-loop system for step input

With using the discrete-time optimal observer gain, the 
Kalman filter can be devised as

                        (43)

Then we have the error covariance matrix as the form 
of

∑ 


   
  



                  (44)

And stable poles are obtained as

 



















                  (45)

In Fig. 4, the output response for the original 
system is presented for step input. This figure shows 
that the original system is unstable. Left plot shows the 
result before Kalman filter is applied. And right plot 
illustrates the result after Kalman filter is employed.

Fig. 4. Output response for unstable system before and
after filtering

Then Fig. 5 illustrates the output response of stable 
system in discrete-time system. The result before 
Kalman filter is applied is shown in left plot. And the 
result after Kalman filter is employed is shown in 
right plot. The full line in individual plot demonstrates 
the state output response in the case of no noise.
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Fig. 5. Output response before and after filtering for stable
system

Using equation (24) to (9), the steadying observer 
gain can be represented as

                        (46)

Then we have the solution of the discrete-time Riccati 
equation as the form of

 


   
  



                 (47)

The eigenvalue placement of the observer is obtained 
as follows

 



















                  (48)

All the eigenvalues are in stable region which 
means that they are inward the circle of the z-plane 
where the radius of the circle is unit. Thus the system 
can become stable by this observer gain.

3.3 Unified Systems

In this part, we deal with a unified system that can 
represent continuous-like and discrete-like systems 
simultaneously. But we do not inspect the result of 
the continuous-like unified system for summarizing 
purpose in this part. With applying a  and  
operator relationship, we can attain a discrete-like 
unified system. When the sampling period is ∆   ,  
the system represents a discrete-time case of the 
unified system. In this discrete-time case, the system 
matrices including   can be discovered to be

 






     

      
     
     





   (49)

   






 



 





    






 
 









       
















                    

   


 
 



   

  Presume that the noise intensity ∑  ∑

 . The original system eigenvalues for 
sub-system two are obtained to be

 



























 
 






                 (50)

As examined in the example, the discrete-like 
unified system is unstable. Fig. 6 illustrates that the 
plot of state response in the open-loop discrete-like 
unified system.
  We can discover the optimal controller for a 
reduced-order system as follows

                        (51)
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(a) Open-loop unified system state response xd1 for step
input

(b) Open-loop unified system state response xd2 for step
input

(c) Open-loop unified system state response xd3 for step
input

(d) Open-loop unified system state response xd4 for step
input

Fig. 6. State response for open-loop system for step input

With using the discrete-like unified optimal observer 
gain, Kalman filter can be designed as

                       (52)

Then we obtain the error covariance matrix as the 
form of

∑ 


   
  



                (53)

And stable poles are obtained as

 














 
 



                 (54)

In Fig. 7, the output response of the original 
system is shown for step input. This figure means that 
the original system is unstable. Left plot illustrates the 
result before Kalman filter is applied. And right plot 
shows the result after Kalman filter is employed.

Fig. 7. Output response for unstable system before and
after filtering
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Then Fig. 8 illustrates the output response in 
unified system. The result before Kalman filter is 
employed is presented in left plot. And the result after 
Kalman filter is applied is shown in right plot. The 
full line in individual plot illustrates the state output 
response in the case of no noise.

Fig. 8. Step input-output response before and after
filtering

Using equation (39) to (28), we obtain the steadying 
observer gain as the form of

                      (55)

Then we have the solution of the unified Riccati 
equation described as

 


 
 



                      (56)

The eigenvalue placement of the observer is attained 
as follows

 














  
   



         (57)

All the eigenvalues are in stable region which 
means that they are within the left-half plane with 

radius ∆


 . Thus this system can become stable 

by this unified observer gain.

Ⅳ. Conclusions

One of essential problem for signal processing and 
control field is the evaluation of the original system 
state from the state monitoring and the input. Inspired 
by this issue, in the coverage of this paper, the 
optimal linear state evaluator, acknowledged as the 
Kalman filter, is inspected on the basis of reduction 
of the covariance error of the slow state. For this 
reason, the design dealed with this study is in terms 
of the slow sub-system alone. To evaluate the 
necessary parameters, all possible monitoring states are 
investigated. We discovered the  optimal observer in 
unified system. And that in discrete-time system is 
presented for comparing purpose. From the steadying 
obsrver gain for discrete-time system, we can obtain 
stable poles of (0.3059, 0.5011). And for that of 
unified system, stable poles of (-0.9588+0.3230 , 
-0.9588-0.323o ) are attained. Based on the Riccati 
equation method, finding the steadying observer gain 
that settle the observers in each system was proved to 
be successful. Numerical results, Fig. 5 and Fig. 8 
show the performance of steadying observer very well. 
In case that convinced required eigenvalue locations 
exist, this inverse issue can be employed to investigate 
the proper matrix  and  .
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