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Optimal Observer of a Stochastic Decentralized Singularly
Perturbed Unified System

Dong-Gi Lee*, Inha Hyun**

Abstract

In this research, devising a Kalman filter is carried out to surmount or eliminate the noise enclosed in system
signals. This Kalman filter is an optimal appraiser of the state, where optimal is prescribed in relation with reducing
the mean square assessment error. Optimal observer with reduced-order is suggested for the decentralizied
discrete-time system, and a unique optimal observer is developed for the unified decentralized system where
reduced-order is used. The reduced-order steadying observer is also obtained by the Riccati equation method. The
research literature has not still disclosed research results for this reduced-order unified optimal observer issue for the
decentralized singularly perturbed system. For verifying these outcomes, we demonstrate that mathematical evidence
for optimal observers attained from the examples of discrete-time, and unified system.
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|. Introduction feedback linearization method [6]. Nevertheless, some
states are not perceptible in many utilizations. In other
Devising a feedback controller has been studied words, adequate sensors for guaging these states
very sincerely because it was presumed that all state presently are not found. In case that the states for
variables are attainable for state monitoring [1]-[5]. Y. system are not feasible, then a state observer is put to
M. Kim and W. B. Baek extended the research to use of evaluating the initial system states.
adaptive sliding mode control for quadrotor with Occasionally, indeed when materializing optimal
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control, system efficiency is yet intolerable. One of
the essential causes for this is that dynamic systems
are stimulated not only by the allowed control input
but also by disruption signals. These signals incur the
system type being stochastic [7]. To remove or get rid
of the signal noise involved in system signals, a
Kalman filter is required to be formulated. The
Kalman is an optimal evaluator of the state, where
optimal is established on the basis of lessening the
error of mean square assessment. Settling the observer
is of concern to many academic investigators [8]-[11].
H. Do and J. Oh introduced a study on smartphone
indoor navigation technology using extended Kalman
filter [12].

In this work, reduced-order optimal observers are
proposed for the decentralized discrete-time system,
and a exclusive optimal observer is suggested for the
decentralized  reduced-order  unified system are
obtained. The reduced-order steadying observer will be
acquired by the Ricccati equation method too. The
academic literature has mnot still acknowledged this
reduced-order unified optimal observer issue for the

decentralized singularly perturbed system.
II. Main Results
2.1 Discrete-Time Systems
2.1.1 Optimal Observer Acquisition

For the stochastic decentralized discrete-time system

[12], consider the following system model acquired in

[5].

wi(kz—&-l):A x.(k)+ B u, (k) + F g w, (k) (1)

q0i* ¢ q0i i q0i ™
y; (k) = Cloi®i (k) +Dyoit; (k) +Sq()z'wi(k)
+Fq32vvi(k')

where z,(k)ER" is the state vector of the system,
u;(k)ER? and y,(k)E R are the system input and

output vectors, respectively. The matrices A, B,

C

w0i» and D, are constant matrices of appropriate
demensions. Independent vectors of Gaussian noise are
w;(k)€R and v,(k)ER with zero mean and

intensity 1, and V5, respectively.

"

In this case of a discrete-time system, original
system mnoise and noise for state monitoring are
presumed to be white Gaussian noise having zero
mean >, >0 and intensity >, > 0. The correlation

function is described as

Elw, (k)] = Blv, (k) ]=0 @)
Elw,(k)w! (k+p)]=%,8(p)

Elv,(k)o] (k+p)]= = ,5(p)
E[Ui(k)w?(k"Fp)]:E[wl(k)vf(k+p)]:0

In accordance with stochastic control method for
observers [14], a state evaluator is able to be
formulated for individual subsystem. Because the
control input w;(k) is deterministic, the state

evaluator can be described as

x;(k) = Az, (k) + B gu, (k) + (3)

q0i*¢ q0i i

where y, (k) = C oz, (k) +S gw, (k) + F 30, (k)

q0:~i q3tvi

Then we have the goal here to discover the optimal
observer gain L, (k) that eliminate the noise
involved in the system output signals. Here, we adapt

the orthogonality priciple [14]:

A necessary condition for a linear estimate to be
optimal is that the estimation error be orthogonal(in
the probabilistic sense) to al of the data:

Elem;]=0 for all i )

Utilizing the orthogonality principle indicates that

El{z,(k+1)—2,(k+1) }y (k) |=0 (5)
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wherey() Cox,(k)+S w, (k)+F. v (k).

q0i*¢ q0i™1 q3ivi

Using y, (k) into equation (5) gives

El{a,(k+1)—2,(k+1) }y7(n) ] (6)
= (A = Lyoi Cpos) E[ {2, (k) — 2, (k) }y T (n) ]
+(qu Lquqm) [wq(k)y,T(”)]
Lqu q3ZE[v (n)]ZO
Considering (k) is optimal,
El{z,(k+1)—2,(k+1) }y7 (k) |=0 for n<k. As

original system noise and state monitoring noise are
uncorrelated with past state
E[wi(k)yzj(n)]zE[Ui(k’)y,,;T(n)]:O. So, the
orthogonality principle is validated to all data such
that n <k. For n=k,

monitoring,

E[{xxk)—az HOIE (7)
Elfz, (k) =z, WG, d0itt; (k) + 80,0, (k) + Figiv, (k )]
Blw, (k ) ( )]

E{ { q07 z qu 1(k)+Fq321)z )}T]
:Z, quE[U (k)]

= B, (k) { Cpuer, (k) + S o, (k) + Ev, (k) } 7]
:Zqugi

Associating these outcome generates

Bl{; (k+1) =, (k1) ful (n) ®)
= (Aq()z (]OL CZ;O;) Z( 7 ( ) CY(]%;L
(Fq()i qu )Zu qu q07 q3121 q3i

Then, the optimal observer gain is given as

Lqu (k) ( (1072 ( ) a1€1 + E;O/ Z wq0i ) q()i1 (9)
where
I/q(h = Oq()zzez( )Cq%);+SquZuSq%);+FqELZL q3i *

Because of the evaluation of the state, the error is
described as e,(k) ==,(k)—xz,(k). Then, the

following equation is generated as

e;(k+1) ==z, (k+1) —z;(k+1) = (10)
(Aq07 LquCqu) 1( )+
[Fqu _Lqu(k)SOi _LOi(k)qu'} [1;)%((]];))}

For a discrete-time system, the following evaluation
covariance matrix for error is demanded to stipulate
the Kalman gain. The error model is able to
determine this covariance matrix. White noise is the
Input to the error model here. Using this outcome to

the error model generates

Zez( + ]-) (Aq 0i qgl(k) quj)zei(k) ° (1 1)
(A = Lyo; (k ) 01)T+
[EI()’ L’107( (1 4(‘1{:)}(_‘(]3,}
[Zu l i qol< )Sqo )"
0 ’U qUZ )FQSZ

With deploying equation (11), the equation for the

error covariance matrix e, (k) becomes

(107261 q0i Z(/ (12)
- (Aq07zech7O; +Fq022u q02>
( q07 ucng‘t + SqOLZu ngt +Fq3LZU q3L)

( €l CII%;Z + FQOZZU qu) + Qq(]l

Now we have a conclusion that the > (optimal
numerical figure) is achieved by converting the
presented Lyapunov equation to the Riccati equation.
Then the optimal value of >, is able to be
completed by choosing the optimal Kalman gain,
Ly = (A2 O + Fp 2 ,5.0:) Vi . From equation
(12), the optimal covariance matrix of the >, is able

to be acquired by

0= Aq07zez q0¢ Zeii (13)
( (1052 CT+Sq10L) ( qOLZ(LCY{]%]:+R(110/> :

ei ~q0i

(Aq()zzm Cq%); + Squl) + Qq()?

where
T
Sql()i L;{OLZ SOZ’qu[)l q01ZuSq02 +Fq31 21 qu .

Ultimately, we can achieve the optimal stochastic
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observer equation as follows

z; (k) = Aoz, (k) + Bgu; (k) + (14)

q0i Ui

Lqm[yi(k)_?;i(k)]

where Z,; is the optimal stochastic observer parameter,

and Lq()i = (Aq()izei C:/%); + E]Oizw“gqgi) VE 1’ Zei, =
K

In equation (14), >I,; denotes the solution of the

algebraic discrete Riccati equation.

0= AquZeiAqgi — 2~ (AquZeingi + Sql()i) (15)

* (CQOiZeiOqgi +Rq10i)71 * (Aq[]izei ngi +Sq10i>
+ Qqu

2.1.2 Robustness of Steadying Observer
In [5], for devising the steadying optimal
controllers, the discrete-time Riccati equation was
applied. In this part, by using the Riccati equation
method, the steadying observer gain is able to settle

the observers when the state parameters are not

attainable for evaluation. If the discrete-time system is

z,; (k) :Aqui(k) —|—B,101¢u7-(k) (16)
y; (k) = quﬂi(k) +Dq0iui(k)

Now we have the closed-loop system as the form of

z;(k+1 — By, Go)w; (k) (17

)= (Aq()i
= Aqa-xi(k)

and the LQ performance index is given by

Ji= 33 [T R) Qi (k) + 207 () Mg, (k)
O N+ ul (k)R u, (k)

i q0:™1
(18)
The optimal control for subsystem one is
u; (k) == G, (k) (19)

where G, = (R

q01

+BIKB,y) (M5 +BL

q0¢ q0i

[(/ZA(IOIZ> .

In equation (19), KA, denotes the solution of the

fundamental Riccati equation. Then we have

0= Aq€1 K;Aq[)i - K + Qq()i - (Bq{];', KA(]UI + M]%;i >
* (Rqu + qui K?:qu)ﬂ (qui K;Aqm + %gi )

(20)

The control feedback gain in equation (19) is the
gain that is able to steady the system equation (16)
too.

Then, the observer can be described as

2, (k+1) = (A, — L Cooi )7, (k) + Bgu; (k) (21)

+ L yoy; (k)

—L,.C..) are the

q0: q0i ~q01

The poles of the matrix (A
observer eigenvalues. And (A, —L,,C,;) and
(A

i~ LyoiCpoi) " have the same eigenvalues. So

(Aqu - L(]Oi qu) T'= Aqu - ngi ngi (22)
The following equation is derived by means of
applying the similarities between equations (17) and

Q@1).

Aqu‘, - Bqu‘ X Gqu (23)
T iLT T
Aq()i - quz X Lq()i

Now we can attain the steadying observer gain for

sub-system one can be attained from

—1
Gqu = (Rq()i + qui [(quOi) (A[qgl + qui [(quOz> (24)
—1
ngi = (Rq()i + CquKz‘ ngi) (]an + CqUi[(;Aqgi )
where
0= Aqu[(iAqgi — G- (Cqu[(iAqgi + j”qu) T
(Rq()i + qu()z'K; qu%)} )71 * (Q1OiK;ZA(1€i + M]%):) + Qq()i .
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So, the L, can place the poles of the matrix
(4

—L,C,)" inward the circle of the z-plane
where the radius of the circle is unit. Because the

q01 q0i ~'q01
sign of transpose does not change the pole placement
of a matrix, the observer gain L, is able to steady
the matrix (A4, — L, Cyo;) -
2.2 Unified Systems

2.2.1 Optimal Observer Acquisition

By applying delta operator approach [15], a
stochastic decentralized unified system can be given
by

px; (1) = AT (7) + B o, (r)+ Fpw, (1) (29
Y (r)= C’pm-a:i (7) + D, (r)+ Spmwi (1)
+Fp3ivi (r
A —T B, F.
_ “7q0i _ q0i A0
where Ay = = B = A Fo = A
Cp()i = Cq()z'v Dp()i = quiv S,)m = Sqow Fps, = an, And

z,(r)ER" is the state vector of the system,
u;(1)ER” and y,(7)E R are the system input and
output vectors, respectively. The matrices A, B,
c

02

i
and D,, are constant matrices of appropriate
demensions. Independent vectors of Gaussian noise are
w;(1)€R and v;(1)ER with zero mean and
intensity 1/, and 1, respectively.

It can be presumed that the noise to represent
white Gaussian noise having zero mean >, >0 and
intensity >, > 0 where the sampling period is A.
Such noises are presumed to hold the subsequent

correlation functions.

wi(7)]= v, ()] =0 26)
()

In accordance with stochastic control method for

observers [14], a state evaluator is able to be

formulated for individual sub-system. Because the
control input w;(7) is deterministic, the state evaluator

can be described as

p,(7) = A2, (7) + B o (1) + Ly [y (1) — 9, (7) ]
27)

where y, (1) = C .z, (1) + 8 g, (7) + F 0, (1)

P P07 p3iYi

y,(T) = C’ﬂ()i L(T)

>

Then we have the goal here is to discover the
optimal observer gain L, that remove the noise
involved in the system output signals. With applying
the optimal observer gain in equation (14), the optimal

observer gain can be acquired as

L =Ly = (28)

(A+A4,D)S, Ch+AF,> STV

P07 pet ~ pOi 0L 0L

where
Ly = (A2 i Oy + Fpi 2,5,0) @

ei ~q0i q0i
-1
( Cqu Zci ngi + Sq()i Z S 0 + Eﬁi Z v}'—‘qgi )

w*q0i
Vi = CpoiZ i Cpy + A9 02,80+ F

pei ~q0i pw™ p0i p3i

T
Z’UF p3i

From equation (28), the > ,(covariance matrix of the
error) can be rewritten as subsequent equation
0= Ap()iz pei + meA,ﬂ' + AApOiZ /)(iiA/Jgi + Qp 29)
- [(AApOi +1) Zpei Cpgi + AQFpUinwSpgi ] *
[ CoprZ i G + D80S+ A F 0 i |
[ CﬂOiZ/)ei (A A/JO?' +1) T+ A 2Spm‘ Z /)wFpgi ]

-1

Ultimately, we can represent the optimal stochastic

observer equations as follows

pggi(r) =A 2.(1)+ B u(7) -I—Lpoi{yi(T) —3;1(7)]

p0i* ¢ p02™"1
(30)
where
— T T
LpOi - ((A + Ap()i,[) Z:pei OpOi + A2Fp0izpw5p0i) V/;)il
— T 2 T T
I//)Oi - QJOiZ pet q{)i +A *Sv/)()iz/nu*gp()i + }7/)3iz/m};:u3i



34 Optimal Observer of a Stochastic Decentralized Singularly Perturbed Unified System

Fig. 1 illustrates that the reduced-order optimal

observer in unified system for the ith sub-system.

2.2.2 Robustness of Steadying Observer

Assuming that the unified system is given by

where G, =
(R + ABY KB,,) (Mh+Bh K(I+AA4,))

In equation (34), A, denotes the solution of the

unified Riccati equation. Then we have

0= Aqo, KAy —K+AQy — (35)
pL; (T) A/J()l'rz (T) + B/)Olul (T) (31) T
yi (1) = Cx,(7) + Dy, (7) (B KA+ My,) "+ (R + ABG KB )™
(BpOz KAqu + ]llpgz)
then the closed-loop unified system is written as
The control feedback gain in equation (34) is the
pr (1) = (A — By Gz, (1) = A2, (1) (32) gain that can steady the system equation (31) too.
Then, the observer can be described as
and the LQ performance index is given by
. Pag,(T) = (14Lp0i_(Lp)OiCypOi) L( )Jerm ,(7') (36)
Ji :ES sz(T) Qp()l z( )‘I'Ql‘ ( )Mp[]?uz( ) (33) pOzyz B
ul(7) R g, (7)
Now we can recognize that the eigenvalues of
The optimal control for sub-system one is (ApoZ L ; Cp()z) and (A/)01 L0 Cooi )7 are the
same, SO
u; (1) == Gy, (7) (34)
(Ap()i - LpOi CpOi ) T= pOL Cpgt Lpgl (37)
Dpoi
W, (7)
i Spoi
poi
N an(T) Xri(T) R + X+
u(7) > Bpoi S > Cpoi _+’(T>__’ Yii(T)
Control System
Input F Output
p3i
Apoi ) T
i(7)
X Raq(1) Yi(0) - x +
" S i Cpo] '\D
Apoi )
Lpoi «

Fig. 1. Optimal observer of a decentralized singularly perturbed unified system with ith reduced-order
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The following equation is derived by means of

applying the similarities between equations (32) and (36).

A, — B

P07

X G

P07

(38)

pOi

T _ T A
ApOi Op()i X L,o()i

The steadying gain of the observer for sub-system

one can be achieved from

Gy = (R

3 perABpgiKB )t (39)

77 p0e

(Mf+Bh K (I+AA))

POz POz

Lpgi = (RpOi +A Cmei Cpgi)71

(Mh+ Ok (I+AAL))

p0i PO~ i

where
0= Aq()i](z’Aqgi —K+A me —A( CpOi[(iAqgi + ]ngz
(Rpm' +A CpOiK; Cpgz’)ﬂ y (CWil(;Aqgi + Mpgz)

So, the LMT),- can place the poles of the matrix

(A —L

i Cpol-)T within the circle of the plane with

the stable region of radius % Since the sign of

transpose does not change the pole placement of a
matrix. It means that the observer gain L, can
steady the matrix (A, — L, Cy;).

The diagrams illustrating stability region [16] for
different operators are given in Fig. 2. The variables
s, z, and v denote transformed variables in discrete-

time and unified systems.

an o
N

A
EI}/I2 +Re(y) <0

1
A
lz] <1

(a) Discrete—time case (b) Unified case
Fig. 2. Stability region and diagrams for discrete-time and
unified systems

)T

[II. Numerical Examples
3.1 Discrete-Time Systems

This part proposes the stochastic decentralized
singularly perturbed system applied to example 3.2 in
[5]. The subsequent discrete-time system can be
discovered by being discretization of example 3.1 by
applying MATLAB function c2d with sampling period

of 0.5.

1.2394 0.5110 —0.0023 —0.0007
4 = —0.1836 0.4316 0.0010 —0.0006
1 1.2949 —0.4766 —0.0038 0.0007
0.8325 0.4878 —0.0014 —0.0007

» (40)

—0.0950 —0.0622
| 0.0458 _|—0.1737
Byi—1= 0.1445 » By = 0.2956 |’
—0.0546 0.4077
0.3290
_ _|0.4170 _
Fqi—l _Fqi:2 - 0.55661’ Fq3i =1
0.4958
C,_,=100-140],C,_,=[000—1.2]

qi=1 q

10
qui = qu = [0 1]7qu =1

Presume that the noise intensity >, =2, =0.1
and the sampling period is 0.5. For sub-system two,

the original system poles are

1 1.0953

2l _ 0.5713

5| |—0.0001+0.0000i (41)
—0.0001 —0.00007

As examined in the example, the decentralized
discrete-time system is unstable. Fig. 3 illustrates that
the plot of state response in the open-loop discrete-
time system.

We can discover the optimal controller for reduced-

order system as follows.

Gy = [—4.0173 —2.9590] (42)



36 Optimal Observer of a Stochastic Decentralized Singularly Perturbed Unified System

System State, xql
|

0 é lb 1‘5 Zb 25 30
time in sequence

System State, xg2

o] 5I l‘O 1‘5 Zb 2‘5 30
time in sequence

~104

System State, xq3
|

0 5 10 15 20 25 30

time in seauence

—54

System State, xq4
|

0 5I 1‘0 lIS Zb 2‘5 30
time in sequence

Fig. 3. State response for open-loop system for step input

With using the discrete-time optimal observer gain, the

Kalman filter can be devised as

Ly = [—1.19420.0716] " (43)

Then we have the error covariance matrix as the form
of

[ 34772 —0.4246
2= {—0.4246 1.9977 } )
And stable poles are obtained as
F, 0.0018}
— ql| _
Poles = [P(ﬂ] = [0.5172 (45)

In Fig. 4, the output response for the original
system is presented for step input. This figure shows
that the original system is unstable. Left plot shows the
result before Kalman filter is applied. And right plot

illustrates the result after Kalman filter is employed.

30

N
°

,4
°

open-loop output response

150 200

time in sequence

W
¢

N N
° w

H
o

\

step input output response

\

|

50 100 150 200 250

time in sequence
. 4. Qutput response for unstable system before and
after filtering

=

Q

Then Fig. 5 illustrates the output response of stable
system in discrete-time system. The result before
Kalman filter is applied is shown in left plot. And the
result after Kalman filter is employed is shown in
right plot. The full line in individual plot demonstrates

the state output response in the case of no noise.
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Output response, yq

o 20 a0 60 80 100 120 140 100

discrete-time sequence k

L PN M s N AMAMAA NI pan

Output response, yq

50 100 150 200

discrete-time sequence k

Fig. 5. Output response before and after filtering for stable
system

Using equation (24) to (9), the steadying observer

gain can be represented as

L = [—0.92410.1209] (46)

q

Then we have the solution of the discrete-time Riccati

equation as the form of

s _ [ 64021 —0.6405

@ |—0.6405 2.0478 (47)

The eigenvalue placement of the observer is obtained

as follows
P 0.3059
_ ql] _
Poles = [Pq,j B {0.5011] (48)

All the eigenvalues are in stable region which
means that they are inward the circle of the z-plane
where the radius of the circle is unit. Thus the system

can become stable by this observer gain.

3.3 Unified Systems

In this part, we deal with a unified system that can
represent continuous-like and discrete-like  systems
simultaneously. But we do not inspect the result of
the continuous-like unified system for summarizing
purpose in this part. With applying a ¢ and §
operator relationship, we can attain a discrete-like
unified system. When the sampling period is A =0.5,
the system represents a discrete-time case of the
unified system. In this discrete-time case, the system

matrices including A; can be discovered to be

0.4788 1.0220 —0.0046 —0.0014
4= | 03672 L1368 00020 —0.0012] 0
57 | 25898 —0.9532 —2.0076 0.0014
16650 0.9756 —0.0028 —2.0014
01900 —0.1244
| 00916 | —0.3474
Bii=1=1 g2800 | Poi=2= | 05012
—0.1092 0.8154
0.6580
0.8341
Frie = Fsi=a= 11133
0.9916

Csi_,=1[00—1.40], C5;_, =[000—1.2]
10
Qﬁli = QJ?i = [0 1]7 R()‘j =1
Presume that the noise intensity >, = 20,

=0.005. The

sub-system two are obtained to be

original system eigenvalues for

Py, 2.0379

[Pl |—3.7243
Poles = 2|~ [~0.0100 (50)

P, 0.0053

As examined in the example, the discrete-like
unified system is unstable. Fig. 6 illustrates that the
plot of state response in the open-loop discrete-like
unified system.

We can discover the optimal controller for a

reduced-order system as follows

Gy = [—2.7482 —1.9090] oy
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State, xd1
| | ]

|
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|
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(a) Open-loop unified system state response xd1 for step

input

ESY

30 1

251
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Fig. 6. State response for open-loop system for step input

With using the discrete-like unified optimal observer

gain, Kalman filter can be designed as
Lso; = [—2-38840.1432] 7 (52)

Then we obtain the error covariance matrix as the
form of

| 11.1271 —1.7188
iei = [—1.7188 2.3392 } ©3)
And stable poles are obtained as
_ | Bn|_ [-2.8795
FPoles = {PJJ B [— 1.0926] 4

In Fig. 7, the output response of the original
system is shown for step input. This figure means that
the original system is unstable. Left plot illustrates the
result before Kalman filter is applied. And right plot

shows the result after Kalman filter is employed.
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Fig. 7. Qutput response for unstable system before and

after filtering
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Then Fig. 8 illustrates the output response in
unified system. The result before Kalman filter is
employed is presented in left plot. And the result after
Kalman filter is applied is shown in right plot. The
full line in individual plot illustrates the state output

response in the case of no noise.

Output response, y

2 4 6 8 10 12 14 16 18 2c

Output response, y

2 a 6 8 10 12 14 16 18 2c

time in sequence k
Fig. 8. Step input-output response before and after
filtering

Using equation (39) to (28), we obtain the steadying

observer gain as the form of
Lsp; = [—1.1647 —0.1548] " (55)

Then we have the solution of the unified Riccati

equation described as

|

K

3.9545 2.4240]
2.4240 4.2838

(56)
The eigenvalue placement of the observer is attained
as follows

P. _ .
POZBSZ[ 01}:{ 0.9588 +0.3230i 57

Py,|~ [—0.9588—0.3230i

All the eigenvalues are in stable region which

means that they are within the lefi-half plane with

. 1 .
radius ~=2 Thus this system can become stable

by this unified observer gain.

IV. Conclusions

One of essential problem for signal processing and
control field is the evaluation of the original system
state from the state monitoring and the input. Inspired
by this issue, in the coverage of this paper, the
optimal linear state evaluator, acknowledged as the
Kalman filter, is inspected on the basis of reduction
of the covariance error of the slow state. For this
reason, the design dealed with this study is in terms
of the slow sub-system alone. To evaluate the
necessary parameters, all possible monitoring states are
investigated. We discovered the optimal observer in
unified system. And that in discrete-time system is
presented for comparing purpose. From the steadying
obsrver gain for discrete-time system, we can obtain
stable poles of (0.3059, 0.5011). And for that of
unified system, stable poles of (-0.9588+0.32307,
-0.9588-0.32307) are attained. Based on the Riccati
equation method, finding the steadying observer gain
that settle the observers in each system was proved to
be successful. Numerical results, Fig. 5 and Fig. 8
show the performance of steadying observer very well.
In case that convinced required eigenvalue locations
exist, this inverse issue can be employed to investigate

the proper matrix @ and R.
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