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Abstract

This study focuses on the importance of communication in the healthcare field and the challenges faced by 
patients who are unable to speak due to medical conditions or treatments in expressing their needs and concerns. It 
highlights the potential for providing assistive solutions in such situations. To address this issue, we propose a novel 
approach using speech imagery of sentences, a technique where one imagines speeching without actually producing 
sound. The study collected electroencephalography(EEG) data from healthy participants and compared it with data 
collected during speech imagery generation. The study employed a dataset comprising four affirmative class sentences 
and four negative class sentences to conduct the experiment, utilizing two classifiers and two deep learning techniques 
for analysis. The results revealed that the classification accuracy for the affirmative class sentences was highest when 
employing regularized linear discriminant analysis(RLDA), while the classification accuracy for the negative class 
sentences was highest when using support vector machine(SVM). Although the study was conducted with a sample of 
healthy participants, it underscores the potential of speech imagery as a bidirectional communication modality for 
individuals who are unable to speak. Furthermore, this research represents a promising avenue for future 
investigations, focusing on decoding the intended messages of a select population with communication impairments.

요  약

의료 분야와 같은 환경에서 직접적인 음성 발화가 아닌 발화 상상만으로 의사소통을 하는 상황을 가정하였

을 때, 문장 단위의 발화 상상이 해석될 수 있는지에 대한 연구를 진행하였다. 피실험자들은 뇌전도 측정 기기 

(이하 EEG)를 착용한 후, 4개의 긍정문과 4개의 부정문 총 8문장에 대한 발화 상상을 진행했다. 기록된 EEG
데이터는 전처리하여 4개의 분류기 (RLDA, SVM, LSTM, DNN)를 통해 분류하였다. 긍정문 4문장, 부정문 4문

장 분류에서는 각각 RLDA (0.4145), SVM (0.3625) 이 가장 높은 분류 성능을 보였으며, 이는 4개 문장의 

chance level인 0.2500 보다 모두 높은 값을 보여 발화 상상이 해석될 수 있음에 유의미한 수치를 보여준다. 이 

연구는 문장 수준의 발화 상상에 대한 해석 가능성을 확인했으며, 추후 발화에 어려움이 있는 실제 환자들을 

대상으로 추가 연구가 필요하다.
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Ⅰ. Introduction

Brain-computer interface(BCI) is a technology 
designed to enable direct communication between the 
human brain and external devices[1]. The BCI systems 
first acquire brain signals and then convert them into 
commands that control external devices such as 
prosthetic limbs or computer programs[2]. The 
development of BCIs aims to find new ways to 
support individuals with disabilities or impairments that 
limit their ability to communicate or interact with the 
world around them[3][4]. BCIs have shown great 
promise in helping people with conditions such as 
paralysis, locked-in syndrome, and motor neuron 
disease communicate and control their environments[5]. 
In particular, electroencephalography (EEG)-based BCI 
has recently received a lot of attention due to its 
advantage of being able to acquire brain signals 
non-invasively from the scalp[6].

Speech imagery is one of the promising paradigms 
for EEG-based BCI to allow individuals to 
communicate with others by modulating their brain 
activities based on the cognitive process involving 
mentally rehearsing speaking without producing any 
audible sounds[7]. Speech imagery has several 
advantages over other BCI paradigms, such as being 
suitable for people with motor impairments or speech 
disorders[8] and being a natural and intuitive way to 
communicate[9][10]. Moreover, it has the potential to 
generate continuous speech output, allowing for more 
fluid and flexible communication[11]. Previous studies 
have suggested that speech imagery can activate 
similar brain regions to actual speech production, 
making it a promising communication tool for patients 
with speech disorders. However, more research is 
needed to explore its potential applications. In order to 
achieve classification of a greater number of classes, it 
is imperative to pursue a multifaceted approach across 
various domains. For instance, the absence of 
established, formalized algorithms for speech imagery 

classification necessitates the application of diverse 
algorithms, with special attention given to the 
frequency domain[12].

The main contributions of this study are as below. 
The primary objective of this study is to investigate 
the classification of language at the sentence level, as 
opposed to the word level. The utilization of EEG 
signals generated during speech imagery serves as the 
basis for accurately classifying sentences containing 
specific words. Previous research efforts in the field 
have predominantly concentrated on word-level 
language classification and vowel classification, 
yielding noteworthy advancements and significant 
findings. However, this study represents a notable 
contribution by providing empirical evidence and 
demonstrating the feasibility of effectively classifying 
language at the sentence level.

Secondly, the study demonstrates the capability of 
machine learning and deep learning techniques, such 
as regularized linear discriminant analysis(RLDA), 
support vector machines(SVM), long short-term 
memory(LSTM), and deep neural networks(DNN), to 
decode the speech imagery paradigm from EEG 
signals. Specifically, the research findings indicate the 
ability to accurately classify four types of sentences, 
including affirmative and negative statements, based on 
the patterns of brainwave signals generated during 
speech imagery. This signifies the successful decoding 
of language-related information from EEG signals and 
highlights the potential of these computational 
approaches in understanding and classifying 
sentence-level language representations. Overall, the 
paper's contributions suggest that EEG-based BCIs 
using speech imagery as a paradigm for 
communication could provide a practical and effective 
means for individuals with speech impairments to 
communicate effectively, including the ability to 
express negation in their communication.
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Ⅱ. Related Works

As mentions earlier in the Introduction section, BCI 
is a field of research and development focused on 
enabling direct communication between humans and 
external devices. A prominent example of this is the 
decoding of motor imagery to control exoskeletons[12]. 
The technology of detecting eye movements to 
facilitate communication by typing the intended 
message is a well-known early BCI communication 
tool[13]. 

Table 1 provides a comprehensive overview of 
research conducted on speech imagery decoding. 
Indeed, many studies on speech imagery decoding 
have utilized EEG(Electroencephalography) to capture 
the brain's electrical signals. EEG is a non-invasive 
neurophysiological measurement technique widely used 
in scientific research and clinical applications. As 
shown in Fig. 1., this process entails the placement of 
electrodes on the scalp to capture the brain's electrical 
activity, which offers valuable insights into temporal 
dynamics of brain function and cognition.

Fig. 1. Experimental protocol: The overall EEG recording
experimental setup for acquiring brain activity and a

snapshot of the actual task performed by the participants,
which lasted for 3 seconds

In the early research on speech imagery, decoding 
of phoneme-level imagined speech was conducted, and 
analysis was also carried out to investigate which 
parts of the brain are activated in conjunction with a 
neuroscientific approach. Notably, advanced decoding 
algorithms have been applied to evaluate the neural 
correlates of vowels and consonants, a particularly 
popular experimental paradigm. 

Table 1. Related studies for speech imagery decoding from neural activity

References Method Experiment type Experiment paradigm
D’Zmura et al., 2009
[24]

EEG Non-invasive
Imagined speech of two syllables spoken in one of three
rhythms

Leuthardt et al., 2011
[25]

ECoG Invasive Overt and imagined phoneme articulation

Kim et al., 2013 [18] EEG Non-invasive
Speech of monosyllabic Korean words representing two
categories of meaning (number and face)

Martin et al., 2014 [26] ECoG Invasive Overt and covert reading of short stories
Iqbal et al., 2015 [27] EEG Non-invasive Imagined speech of vowels /a/ and /u/, and no action
Iqbal et al., 2016 [28] EEG Non-invasive Imagined speech of vowels /a/ and /u/, and no action
Yoshimura et al., 2016
[29]

EEG/fMRI Non-invaisve Imagined speech production of Japanese vowels /a/ and /i/

Nguyen et al., 2017
[30]

EEG Non-invasive Imagined speech of short words, long words, and vowels

Hashim et al., 2018
[31]

EEG Non-invasive Imagined speech word production

Lee et al., 2018 [32] EEG Non-invasive Imagined speech word production
Lee et al., 2021 [33] EEG Non-invasive Imagined speech word production
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However, in order to further advance it as a more 
natural communication tool, ongoing research is being 
conducted on decoding speech imagery at the word 
level. To decode speech imagery, participants need to 
engage in speech imagery while their EEG signals are 
recorded according to a specific paradigm. In the field 
of speech imagery research, the most validated 
paradigm is the endogenous paradigm[23][24]. In this 
paradigm, participants are instructed to generate speech 
imagery internally, without any exterenal stimuli or 
cues. They imagine themselves speaking or uttering 
specific words or sentences in their minds, without 
actually producing any audible sounds.

There are still limitation in the meaningful speech 
imagery decoding research of many researchers. One 
limitation in current speech imagery research is the 
relatively low decoding accuracy and limited 
vocabulary size achieved in decoding imagined speech 
from brain signals. This can restrict the effectiveness 
and usability of speech imagery-based communication 
tools. Another limitation is the generalizability of 
decoding models across individuals. This individual 
variability poses challenges in developing robust and 
personalized speech imagery decoding systems. 
Therefore, to overcome the limitation of vocabulary 
size in speech imagery decoding as stated in the first 
limitation, we aim to propose a solution by 
implementing subject-dependent decoding of full- 
sentence speech imagery.

Ⅲ. Sentence-Level Neural Language

Decoding

3.1 EEG preprocessing

The raw EEG data were initially processed in 
MATLAB R2022b(MathWorks Inc., USA) using the 
EEGLAB toolbox. A Butterworth bandpass filter was 
applied to the continuous EEG data between 30 and 
125 Hz to remove unwanted frequencies. To remove 

artifacts from the EEG signal, we conducted 
independent component analysis(ICA)[25]. We carefully 
examined the ICA components and removed the ones 
associated with obvious artifacts. Subsequently, we 
applied baseline correction by subtracting the mean 
amplitude of the EEG signal in the prestimulus period 
from each time point. The processed EEG data were 
visually inspected to ensure it was free of artifacts.

3.2 Experimental protocols

Six healthy male individuals between the ages of 
20 and 25 participated in the study after receiving an 
explanation of the experimental paradigm and protocol. 
Prior to the experiment, written informed consent was 
obtained from all participants. They provided written 
informed consent, as per the Declaration of Helsinki 
guidelines. The Institutional Review Board of Korea 
University approved all the experimental protocols 
under the KUIRB-2019-0143-01.

Standard EEG data preprocessing techniques were 
used, including filtering, artifact rejection, and feature 
extraction. The accuracy of the speech imagery 
decoding wasevaluated using several performance 
metrics, including classification accuracy.

The EEG signals were recorded using a 64-channel 
EEG cap and BrainVision(BrainProduct GMbH, 
Germany) Recorder software, with a sampling rate of 
1,000 Hz and an impedance below 10 Ω for all 
channels. The participants were seated in a soundproof 
and dimly lit room and instructed to keep their eyes 
closed and remain relaxed for 10 minutes before EEG 
data was recorded. They performed EEG recordings 
following the paradigm as depicted in Fig. 2. 

Fig. 1. and Fig. 2. show detailed information about 
the experimental environment and the experimental 
paradigm, respectively. After ensuring that the 
participants have taken sufficient rest, a 3-second 
visual cue is presented, followed by 1 second of 
fixation before performing the imagined speech task 
for 3 seconds.
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Fig. 2. Experimental paradigm of imagined speech. The figure presents one single trial of the experiment. Visual cues were
provided for imagined speech. Four sub-trial sessions were conducted per class to output up to 10 visual cues per class

and overall the experimental paradigm consisted of two sessions consisting of a total of 320 trials per session

3.3 Data analysis

The preprocessed EEG data were segmented into 
epochs of 3 seconds duration related to stimulus onset. 

The experiment involved three phases - training, 
calibration, and testing, where participants were 
instructed to imagine speeching affirmative sentences 
(e.g., “I am thirsty”, “I can move”, “I am 
comfortable”, “I am digestible”) and negative sentences 
(e.g., “I am not thirsty”, “I can not move”, “I am 
uncomfortable”, “I am indigestible”). In the calibration 
phase, a classifier was built for affirmative and 
negative speech imagery using different sentences. In 
the testing phase, new sentences were given to decode 
the intended speech imagery using RLDA[26], 
SVM[27], LSTM[28], and DNN[29] and classification 
accuracy was used to evaluate the performance.

RLDA: A model that has been developed as a 
variant of LDA for pattern recognition and 
classification problems. LDA seeks to identify a 
separating hyperplane that maximizes the ratio of 
between-class scatter to within-class scatter. However, 
the estimation of these quantities in LDA can become 
unstable when dealing with high-dimensional data. To 

address this issue, RLDA introduces regularization 
methods to control the complexity of the model 
parameters. RLDA can improve the stability and 
generalization performance of LDA, especially in 
high-dimensional data.

SVM: In EEG signal analysis, both temporal and 
spatial characteristics need to be considered. Therefore, 
SVM can extract the nonlinear characteristics of EEG 
signals by using a nonlinear kernel function.

LSTM: LSTM has been widely used in the analysis 
of EEG signals. In EEG signal analysis, LSTM has 
been applied to a variety of tasks, including the 
classification of EEG signals for the diagnosis of 
neurological disorders, seizure detection, and 
brain-computer interfaces. By modeling the temporal 
dynamics of EEG signals using LSTM, it is possible 
to capture complex relationships and patterns that may 
not be evident through traditional signal processing 
techniques. In this study, we employed an LSTM 
layer consisting of 32 neurons, incorporating 0.2 
dropout and 0.001 regularizers in order to mitigate 
overfitting[30]. A total of 83.34% of the data was 
utilized for training with 10-fold cross-validation, while 
the remaining 16.66% was reserved for testing the 
model's performance.
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DNN: Our adopted deep neural network(DNN) 
architecture employs the backpropagation algorithm 
with Adam optimization for training, and is a 
four-layered multi-layer perceptron[31][32]. The first 
layer functions as the input layer, whereas the second 
and third layers are each comprised of two hidden 
layers. Specifically, each hidden layer includes a fully 
connected(FC) layer, a batch normalization layer, and 
a leaky-RELU non-linear activation function. The 
output layer comprises a FC layer(dense layer) and a 
softmax function, which is utilized as the loss function 
during model training. 

Ⅳ. Experimental Results

We conducted classification experiments using 
conventional classifiers to distinguish between eight 
classes of speech-related signals in two conditions 
(affirmative and negative). Due to BCI illiteracy, 
decoding was not possible for 2 out of 6 subjects, 
and they were therefore excluded from the results[33].

Firstly, we assessed whether classification between 
sentences corresponding to the affirmative and negative 
classes and a rest period state(Rest class) was feasible 
to measure sentence-level decoding performance. The 
average classification accuracies between each class 
and the Rest class, as shown in Tables 2 and 3, were 
0.7079 (RLDA), 0.6875 (SVM), 0.7053 (LSTM), 
0.6293 (DNN) for the affirmative  class and 0.7191 
(RLDA), 0.7258 (SVM), 0.7031 (LSTM), 0.6205 
(DNN) for the negative class. These accuracies surpass 
the chance level (0.5000), indicating significant 
performance. Tables 4 and 5 present the classification 
accuracies for each subject using a classifier for the 
four classes corresponding to the two conditions, 
which were 0.4145 (RLDA), 0.3958 (SVM), 0.3073 
(LSTM), 0.3990 (DNN) for the affirmative class and 
0.3505 (RLDA), 0.3625 (SVM), 0.3035 (LSTM), 
0.3340 (DNN) for the negative class.

The overall average accuracy of the affirmative 
class was slightly higher than that of the negative 

Table 2. Binary classification accuracy of each affirmative
sentence and the “Rest” state

Task vs. Rest RLDA SVM LSTM DNN
I am thirsty 0.7500 0.6720 0.7290 0.6565
I can move 0.6745 0.5935 0.6700 0.5795

I am comfortable 0.6410 0.7035 0.6875 0.6090
I am digestible 0.7660 0.7810 0.7345 0.6720

Average
0.7079
(±0.0518)

0.6875
(±0.0672)

0.7053
(±0.027)

0.6293
(±0.0369)

Table 3. Binary classification accuracy of each negative
sentence and the “Rest” state

Task vs. Rest RLDA SVM LSTM DNN
I am not thirsty 0.6875 0.7020 0.7345 0.6410
I can not move 0.7345 0.6870 0.6875 0.6065
I am uncomfortable 0.7510 0.7810 0.7185 0.6250
I am indigestible 0.7035 0.7330 0.6720 0.6095

Average
0.7191
(±0.0249)

0.7258
(±0.0359)

0.7031
(±0.0247)

0.6205
(±0.0138)

Table 4. Accuracy of 4-affirmative sentence classification

Subjects RLDA SVM LSTM DNN
Subject 1 0.3920 0.3840 0.3190 0.3210
Subject 2 0.4220 0.3750 0.2790 0.3530
Subject 3 0.4380 0.4220 0.3350 0.5310
Subject 4 0.4060 0.4020 0.2960 0.3910

Average
0.4145
(±0.0172)

0.3958
(±0.0180)

0.3073
(±0.0214)

0.3990
(±0.0801)

Table 5. Accuracy of 4-negative sentence classification

Subjects RLDA SVM LSTM DNN
Subject 1 0.3560 0.4040 0.3140 0.3400
Subject 2 0.3280 0.2970 0.2880 0.3120
Subject 3 0.3270 0.350 0.2780 0.3620
Subject 4 0.3910 0.3900 0.3340 0.3220

Average
0.3505
(±0.0261)

0.3625
(±0.0412)

0.3035
(±0.0220)

0.3340
(±0.0190)

class, but we found no correlation between the 
accuracy of the two classes and the result value.

Among the classifiers, RLDA performed the best 
for the affirmative class, while SVM performed the 
best for the negative class. However, the LSTM 
classifier exhibits the lowest classification accuracy in 
both the affirmative and negative classes.
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Fig. 3. is the grand-average confusion matrix for 
the affirmative sentence class across 4 subjects. The 
x-axis represents the predicted values, while the y-axis 
represents the actual values. The RLDA classifier was 
used for this analysis. The true positive rates(TPR) for 
all 4 classes surpassed the chance level 
(>0.25).Notably, the sentence ‘I am digestible’ 
exhibited the highest precision, with a precision value 
of 0.4855, indicating the most accurate classification 
performance within in this class. and Fig. 4. show the 
grand-average confusion matrix for the negative 
sentence class, utilizing the SVM classifier. The TPR 
for all 4 negative sentences were higher than the 
chance level (>0.25). The sentence ‘I am indigestible’ 
achieved the highest precision, with a precision value 
of 0.5210, signifying the most accurate classification 
performance within this class. These matrices of Fig. 
3. and Fig. 4. were generated by a standard 10-fold 
cross-validation method. In our study, we visualized 
the brain activity regions using topoplots, which 
displayed the EEG signals as spatial distributions. Fig. 
5. and Fig. 6. show the topoplots of participant #2. It 
was observed that stimulation occurred in Brodmann 
areas 44 and 45[33].

The left hemisphere for both the affirmative and 
negative classes. In the negative class, clear 
stimulation in the left parietal lobe's Brodmann areas 
44 and 45 was observed between 2.4 and 3.0 seconds, 
while in the affirmative class, stimulation mainly 
occurred in the left parietal lobe at early times (0.6 
seconds - 1.8 seconds), and in the negative class, it 
occurred at later times (1.8 seconds - 3.0 seconds).

In the affirmative class, the stimulation patterns 
typically appeared in a small area near the left 
hemisphere, while in the negative class, the patterns 
tended to occur in larger areas and often in two or 
more spatial regions. Additionally, the patterns in the 
negative class were more dispersed. These differences 

may stem from distinct neurobiological mechanisms 
underlying the affirmative and negative classes.

 

Fig. 3. Grand-average confusion matrix for the affirmative
sentence class was obtained using the RLDA classifier.
The class 'I am digestible' exhibited the highest accuracy

of 0.4855 among the classes

Fig. 4. Grand-average confusion matrix for the negative
sentences class was represented.. Although SVM showed
higher average accuracy compared to RLDA, the RLDA
classifier was chosen due to its superior performance in
most cases. Specifically, the class 'I am indigestible'

exhibited the highest accuracy of 0.521
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Fig. 5. EEG topography from participant#2 for the affirmative sentence class, are divided into five equal parts at 0.6
seconds intervals from 0 to 3 seconds. The patterns are indicate that stimulation in the left parietal lobe occurred mainly at

early times (0.6 seconds – 1.8 seconds) for the affirmative class

Fig. 6. EEG topography from participant#2 for the negative class. The patterns display the occurrence of stimulation in the
left hemisphere’s Brodmann areas 44(Borca’s area) and 45. Clear stimulation in the left parietal lobe’s Brodmann areas 44

and 45 is observed between 2.4 and 3.0 seconds
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Ⅴ. Discussion and Conclusion

The findings of this study suggest the potential for 
developing alternative communication methods to 
address the needs of individuals who are unable to 
communicate verbally. If future research confirms the 
distinguishability and reliability of affirmative and 
negative speech imagery patterns, it could provide a 
foundation for the development of non-invasive 
communication technologies based on brain-computer 
interfaces. 

These technologies have the potential to greatly 
enhance the quality of life for individuals facing 
communication challenges due to neurological 
disorders, traumatic brain injury, or stroke, among 
other conditions.

However, it is important to acknowledge certain 
limitations and areas for improvement in our study. 
Firstly, to increase the generalizability of the 
experimental results, it would be beneficial to expand 
the participant pool and include a larger sample size. 
Additionally, future research should consider including 
actual patients who are unable to communicate 
verbally, in order to better align with the intended 
target population.

Overall, the classification of speech imagery holds 
promise in the field of communication and related 
disciplines. To fully realize the potential of this 
technology, further research is needed to address the 
aforementioned considerations and explore its broader 
applications in communication and related fields.

This paper demonstrated an extension of the 
preliminary study on decoding speech imagery from 
EEG signals, with the aim of building a 
high-performance decoding model specialized for 
sentence decoding. Therefore, the study focused on 
confirming the feasibility of decoding long sentences 
using speech imagery based on machine learning and 
deep learning techniques.

In future work, there are several implications for 
future research and clinical practice stemming from 

our study. For example, future research could 
investigate the applicability of our method to different 
populations with communication impairments, such as 
patients with neurological disorders or brain injuries. 
Additionally, integrating EEG-based speech imagery 
decoding with other neurorehabilitation interventions, 
like transcranial magnetic stimulation or cognitive 
training, may enhance the efficacy of these 
interventions and promote functional recovery in 
individuals with communication impairments. To 
improve the classification accuracy of speech imagery, 
it is necessary to calibrate EEG with cross-session 
data and develop a subject-independent classification 
model capable of achieving consistent accuracy. These 
efforts will help to address the challenge of achieving 
consistent and accurate classification of speech imagery 
using EEG. In addition, by applying advanced deep 
learning techniques, the proposed approach seeks to 
develop an accurate EEG-based BCI that can 
effectively decode speech imagery for sentences to 
individuals with speech impairments. The development 
of non-invasive and effective assistive technologies for 
communication is crucial in improving the quality of 
life and social participation of individuals, and this 
proposed method provides a promising approach to 
achieving this goal. The study highlights the potential 
for further research in this area and underscores the 
importance of continuing to develop and improve 
EEG-based brain-computer interfaces for bidirectional 
communication rehabilitation.
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