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Abstract

This paper presents a comparative study of GR(1) Synthesis and Reinforcement Learning in the context of 
controller generation for the Moving Obstacle Evasion Problem. GR(1) Synthesis, a formal method in computer 
science, provides a systematic approach to automatically generate a controller that satisfies a given set of logical 
specifications. On the other hand, Reinforcement Learning, a type of machine learning, approximates the optimal 
solution by learning from the environment and updating its strategy based on a loss function. While GR(1) Synthesis 
guarantees an optimal solution, it may fail to generate a controller in certain configurations. In contrast, 
Reinforcement Learning can provide a suboptimal but feasible solution in all configurations. The results demonstrate 
the potential of Reinforcement Learning as a viable alternative for controller generation in scenarios where GR(1) 
Synthesis is unrealizable. This study contributes to the understanding of the strengths and limitations of both methods 
and provides insights for their application in system design.

요  약

이 논문은 이동 장애물 회피 문제에 대한 컨트롤러 생성을 위한 GR(1) Synthesis와 강화 학습의 비교 연구

를 제시한다. 컴퓨터 과학의 정형 합성인 GR(1) Synthesis는 주어진 논리적 명세를 만족하는 컨트롤러를 자동

으로 생성하는 체계적인 접근법을 제공한다. 반면에, 기계 학습의 한 유형인 강화 학습은 환경에서 학습하고 

손실 함수를 기반으로 전략을 업데이트함으로써 최적의 해를 근사화한다. GR(1) Synthesis는 최적의 해를 보장

하지만, 특정 구성에서는 컨트롤러를 생성하지 못할 수 있다. 반면에, 강화 학습은 모든 구성에서 최적이 아닌 

실행 가능한 최선의 해를 제공할 수 있다. 결과적으로 GR(1) Synthesis가 실현 불가능한 시나리오에서 컨트롤

러 생성을 위한 강화 학습의 잠재력을 보여준다. 이 연구는 두 방법의 장점과 한계에 대한 이해에 기여하고 

시스템 설계에서의 그들의 응용에 대한 통찰력을 제공한다.
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Ⅰ. Introduction

Generalized Reactivity(1) (GR(1)) Synthesis has 
been a significant tool in the automatic generation of 
controllers that satisfy a given set of logical 
specifications[1][2]. Since its inception, it has provided 
a systematic approach to describe the desired behavior 
of a system in response to its environment. The 
theoretical foundation of GR(1) Synthesis lies in the 
intersection of logic, automata, and system design. It 
uses a fragment of Linear Temporal Logic(LTL)[3] to 
express properties about the future behavior of a 
system, translating these logical specifications into an 
automaton, a mathematical model of computation. The 
automaton represents the system's behavior as a 
state-transition graph, where the system and the 
environment interact. The goal of GR(1) Synthesis is 
to design a controller for the system that ensures the 
system's behavior satisfies the given specifications, 
regardless of the environment's actions.

On the other hand, Reinforcement Learning 
(RL)[4]-[6] is a type of machine learning where an 
agent learns to make decisions by interacting with its 
environment. The agent learns from the consequences 
of its actions, rather than from being explicitly taught, 
adjusting its behavior based on the positive or 
negative feedback it receives. This trial-and-error 
approach allows the agent to learn the optimal policy 
that maximizes the cumulative reward over time. 
Reinforcement learning has been successfully applied 
in various fields such as game playing, robotics, 
resource management, and many others.

From the perspective of system controller 
generation, comparing GR(1) Synthesis and 
Reinforcement Learning is meaningful. While GR(1) 
Synthesis provides an optimal solution by exploring all 
possible states of the system and the environment, 
Reinforcement Learning offers a suboptimal but 
feasible solution even in large state spaces where 
finding an optimal solution is computationally 

infeasible. 
The contributions of this paper are manifold and 

significant to the field of controller generation. Firstly, 
this paper presents a novel comparative study of 
GR(1) Synthesis and Reinforcement Learning, two 
methods that have been traditionally studied in 
isolation. By juxtaposing these two methods in the 
context of the Moving Obstacle Evasion Problem, this 
paper provides new insights into their relative 
strengths and weaknesses. Secondly, this paper 
demonstrates, through empirical results, that 
Reinforcement Learning can serve as a viable 
alternative to GR(1) Synthesis in scenarios where the 
latter is unrealizable. This is a significant finding as it 
expands the range of problems that can be effectively 
addressed using Reinforcement Learning. Thirdly, this 
paper provides a detailed analysis of the performance 
of the controllers generated by both methods. The 
analysis reveals that while GR(1) Synthesis generates 
optimal controllers, Reinforcement Learning generates 
suboptimal but satisfactory controllers. This finding 
contributes to our understanding of the trade-offs 
between optimality and realizability in controller 
generation. Lastly, this paper suggests that in scenarios 
with large state spaces and where finding an optimal 
solution is challenging, Reinforcement Learning can be 
an appropriate choice. This is a valuable insight for 
practitioners in the field, guiding them in choosing the 
most suitable method for their specific problem setting. 
In sum, this paper makes significant contributions to 
the field by providing a comprehensive comparison of 
GR(1) Synthesis and Reinforcement Learning, 
demonstrating the viability of Reinforcement Learning 
as an alternative to GR(1) Synthesis, and offering 
valuable insights into the trade-offs in controller 
generation.

In conclusion, this paper provides a comparative 
study between GR(1) Synthesis and RL from the 
perspective of system controller generation, highlighting 
the strengths and weaknesses of both methods and 
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offering insights into their applicability in different 
scenarios.

The structure of this paper is as follows. In 
Chapters 2 and 3, the theoretical backgrounds of 
GR(1) Synthesis and RL are introduced. Chapter 4 
describes the experiment of solving the Moving 
Obstacle Evasion Problem using reinforcement learning. 
Finally, Chapter 5 concludes with a summary and 
conclusion.

Ⅱ. Generalized Reactivity(1) Synthesis

GR(1) synthesis is a formal method in computer 
science that provides a systematic approach to 
automatically generate a controller, a strategy, plan, or 
policy, that satisfies a given set of logical 
specifications. These specifications describe the desired 
behavior of a system in response to its environment. 
The theoretical foundation of GR(1) synthesis lies in 
the intersection of logic, automata, and system design. 
The specifications for the system are expressed in a 
logical formalism using variables to represent the state 
of the system and logical conditions to describe how 
these variables evolve over time. The logic used in 
GR(1) synthesis is a fragment of LTL, which allows 
expressing properties about the future behavior of a 
system.

The logical specifications are translated into an 
automaton, a mathematical model of computation. The 
automaton represents the system's behavior as a 
state-transition graph. In the context of GR(1) synthesis, 
the automaton is a game structure where two players, 
the system and the environment, interact. The goal of 
GR(1) synthesis is to design a controller for the system 
that ensures the system's behavior satisfies the given 
specifications, regardless of the environment's actions. 
This is achieved by constructing a winning strategy for 
the system in the game structure.

The term generalized reactivity(1) refers to the class 
of specifications that GR(1) synthesis can handle. 

These specifications consist of assumptions about the 
environment and guarantees about the system's 
behavior. The assumptions and guarantees are 
expressed as LTL formulas. The 1 in GR(1) indicates 
that the synthesis problem can be solved in 
polynomial time in the size of the game structure, 
making GR(1) synthesis a practical method for 
controller synthesis in many applications.

A GR(1) specification is a type of specification 
used in the field of formal methods, particularly in 
the context of controller synthesis. It is a fragment of 
LTL that allows for the expression of assumptions 
about the environment and guarantees about the 
system's behavior. The GR(1) specification is used to 
describe the desired behavior of a system in response 
to its environment.

The GR(1) specification is structured as follows: It 
consists of environment variables   and system 
variables  . The environment variables represent the 
state of the environment in which the system operates, 
and the system has no control over these variables; 
they are determined by external factors. The system 
variables represent the state of the system, and the 
system has control over these variables and can 
change them in response to the environment.

The GR(1) specification also includes initial 
conditions , transition relations , and guarantees  . The initial conditions are a propositional logic 

formula over ∪  that specifies the initial state of 
the system and the environment. The transition 
relations is sub-formula ∧ , where   is a 

formula in LTL over ∪∪′ and   is a 

formula in LTL over ∪∪′∪′. Here, ′ and ′ represent the next state of the environment and 
system variables, respectively.   specifies the 

possible transitions of the environment variables, and   specifies the possible transitions of the system 

variables in response to the current state of the 
system and the environment.

The guarantees are a sub-formula ∧ , where 
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  and   are sets of LTL formulas over ∪ . 

The formulas in   are called justice requirements, 

and the formulas in   are called progress 

requirements. The justice requirements specify 
conditions that the system must satisfy infinitely often, 
and the progress requirements specify conditions that 
the system must eventually satisfy.

In the context of GR(1) specifications, the terms 
realizable and unrealizable refer to whether a controller 
can be synthesized that satisfies the given 
specifications.

A GR(1) specification is said to be realizable if 
there exists a controller that, for every possible 
behavior of the environment that satisfies the 
environment assumptions, can ensure the system 
behavior satisfies the system guarantees. In other 
words, a realizable specification is one for which there 
exists a winning strategy for the system in the game 
structure defined by the specification.

Formally, a GR(1) specification ∧∧ is 

realizable if there exists a function   →  such 
that for every sequence    …. of environment 
states that satisfies the environment transition relation  , the sequence    … of system states 

defined by     for  ≥  satisfies the 
system transition relation   and the system 

guarantees  .
On the other hand, a GR(1) specification is said to 

be unrealizable if no such controller exists. That is, 
no matter what strategy the system follows, there is 
some behavior of the environment that satisfies the 
environment assumptions but leads to a violation of 
the system guarantees. An unrealizable specification is 
one for which the environment has a winning strategy 
in the game structure defined by the specification.

Ⅲ. Reinforcement Learning

RL is a subfield of machine learning that focuses 

on how an agent can learn to make optimal decisions 
by interacting with an environment. The fundamental 
goal of RL is to find a policy, denoted as  , which 
is a mapping from states to actions   →, that 
maximizes the expected cumulative reward over time. 
The agent, through a process of trial and error, learns 
to associate states of the environment with actions that 
yield the highest reward.

The general model of RL involves several key 
components: states  , actions , and rewards . The 
agent interacts with the environment in discrete time 
steps. At each time step  , the agent observes the 
current state of the environment ∈ , selects an 
action ∈   based on its policy  , receives a 
reward     , and transitions to a new state   . The process continues until a termination 

condition is met.
In RL, the process of approximating a function 

often involves the use of a loss function. The loss 
function quantifies the difference between the predicted 
output of the function approximator and the actual 
output. The goal is to adjust the parameters of the 
function approximator to minimize this loss.

Let's denote the function approximator as  , which 
is parameterized by  . Given an input state  , the 
function approximator predicts the value of each 
possible action a under the current policy  , denoted 
as   .

The actual value of taking action   in state   
under policy  , denoted as ∙  , is typically 
estimated using a technique such as Temporal 
Difference(TD) learning or Monte Carlo methods.

The loss function   is then defined as the 
squared difference between the predicted and actual 
action values:

  ∙          (1)

The expectation E is taken over the distribution of 
states and actions experienced by the agent.



Journal of KIIT. Vol. 21, No. 7, pp. 13-22, Jul. 31, 2023. pISSN 1598-8619, eISSN 2093-7571 17

The parameters   of the function approximator are 
updated to minimize this loss. This is typically done 
using gradient descent, a popular optimization 
algorithm. The update rule for gradient descent is:

←∙∇                           (2)

where   is the learning rate, and ∇  is the 
gradient of the loss function with respect to the 
parameters  .

By iteratively applying this update rule, the function 
approximator learns to better predict the action values, 
and thus the agent learns to make better decisions.

Ⅳ. Experimentation

4.1 Methodology

This research aims to compare the effectiveness and 
efficiency of GR(1) Synthesis and RL in generating 
controllers for the same problem. The experimental 
setup and procedure are detailed as follows:
1. The GR(1) Synthesis is performed using the 

Spectra[7] tool, which is an Eclipse plugin-based 
tool. The results obtained from the GR(1) Synthesis 
will be cited from relevant reports. For RL, we 
use the PyTorch-based Stable-baselines3[8] with the 
Proximal Policy Optimization (PPO)[9] algorithm.

2. The requirements of the identical problem are 
defined and programmed to suit RL. This step 
ensures that both GR(1) Synthesis and RL are 
applied to the same problem, allowing for a fair 
comparison.

3. The parameters of the problem are set for the RL 
process. And then the trained model is evaluated.

4. The outcomes of the RL approach are subsequently 
juxtaposed with those of the GR(1) Synthesis in 
several respects. One of the key comparisons made 
is to examine instances where the GR(1) Synthesis 
was deemed unrealizable and thus failed to 

generate a controller. In these specific scenarios, 
the question posed is whether RL could step in 
and successfully generate a controller where GR(1) 
Synthesis could not. This comparison provides a 
valuable perspective on the relative strengths and 
potential limitations of each method in the context 
of controller generation.

4.2 Problem formulation

The Moving Obstacle Evasion Problem[10] is 
defined on an n-size discrete grid where an agent 
must avoid a moving obstacle. Initially, the agent is 
located at grid (0, 0) and occupies one cell. In 
contrast, the obstacle occupies a 2x2 cell area and is 
defined by the top-left cell, thus it is located at (n-1, 
n-1). The agent and the obstacle take turns moving in 
one of four directions: left, right, up, or down. The 
agent can move twice in one turn, while the obstacle 
moves one cell after the agent has moved twice, 
under the basic settings. However, a glitch is 
introduced in this problem where the obstacle can 
violate the basic settings and move immediately after 
the agent has moved once. To account for this, a 
glitch count is defined, which allows the obstacle to 
violate the basic settings a certain number of times.

List 1 defines the variables necessary for RL of 
this problem, as well as the action space and 
observation space. In this context, SIZE represents the 
length of the cells along the x and y axes of the 
grid. GLITCHES denotes the number of glitches 
allowed for the obstacle. GLITCH_COUNTER keeps 
track of the number of glitches used so far. 
AGENT_TURN indicates the number of times the 
agent has moved in its turn. The ACTION_SPACE is 
discretized and takes a value from 0 to 4 at each 
step, representing STAY, LEFT, RIGHT, UP, and 
DOWN respectively. The OBSERVATION_SPACE is 
defined by the x and y coordinates of the obstacle 
and the x and y coordinates of the agent.
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Fig. 1. Environment of the problem

List 1. Definitions of parameters

SIZE := N
GLITCHES := M
ACTION_SPACE := {STAY, LEFT, RIGHT, UP,

DOWN}
OBERVATION_SPACE := (N, N, N-1, N-1)

The procedure STEP(ACTION) is defined to 
represent a single step in the environment based on 
the action taken by the agent. The action is passed as 
a parameter to this procedure. The agent's location is 
updated based on the action taken by calling the 
UPDATE_AGENT_LOCATION procedure. The 
AGENT_TURN counter is then incremented to keep 
track of the number of moves made by the agent in 
its turn. A conditional check is performed to see if 
it's still the agent's turn (i.e., the agent has moved 
less than twice) and if the number of glitches used is 
less than the maximum allowed glitches. If both 
conditions are met, a random choice is made to 
decide if a glitch occurs. If a glitch occurs, the 
obstacle's location is updated by calling the 
UPDATE_OBSTACLE_LOCATION procedure. The 
GLITCHES_COUNTER is incremented to keep track 
of the number of glitches used so far, and the 
AGENT_TURN counter is reset to 0, indicating the 
start of a new turn for the agent. If it's not the 
agent's turn or if the maximum number of allowed 
glitches has been reached, the obstacle's location is 
updated, and the AGENT_TURN counter is reset to 0. 
Next, a check is performed to see if the agent and 
the obstacle are not in the same location or adjacent 

locations. If they are not, a reward of 1 is given, and 
the TERMINATED flag is set to False, indicating that 
the episode is not over. If the agent and the obstacle 
are in the same location or adjacent locations, the 
TERMINATED flag is set to True, indicating that the 
episode is over. Finally, the current state of the 
environment, the reward, and the TERMINATED flag 
are returned as the output of the STEP procedure. The 
state represents the current locations of the agent and 
the obstacle, the reward is the reward obtained in this 
step, and the TERMINATED flag indicates whether 
the episode is over.

List 2. Procedure for step function

4.3 Result and analysis

We conducted RL using PPO for a total of 12 

Procedure STEP(ACTION):
Call UPDATE_AGENT_LOCATION(ACTION)
AGENT_TURN ← AGENT_TURN + 1

If AGENT_TURN < 2 and GLITCHES_COUNTER
< GLITCHES Then

IS_GLITCH ← {True, False}
If IS_GLITCH is True Then

Call UPDATE_OBSTACLE_LOCATION
GLITCHES_COUNTER ←

GLITCHES_COUNTER + 1
AGENT_TURN ← 0

End If
Else
Call UPDATE_OBSTACLE_LOCATION
AGENT_TURN ← 0

End If

If the agent and the obstacle are not in the same
location or adjacent locations Then
REWARD ← 1
TERMINATED ← False

Else
TERMINATED ← True

End If

Return STATE, REWARD, TERMINATED
End Procedure
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configurations, ranging from a configuration with a 
grid size of 8 and 1 glitch count to a configuration 
with 64 and 30 respectively. The results can be seen 
in Figure 2. From the graph, we were able to obtain 
a controller that can solve the problem for all 
configurations. Since the agent receives a reward of 1 
for each successful step, the total amount of reward 
obtained can be understood as equivalent to the 
number of steps taken.

Fig. 2. Evaluation result

We will compare this with the results obtained 
using GR(1) Synthesis for the same problem. The 
following Table 1 presents a comparison with the 
results of RL.

Out of a total of 12 configurations, synthesis was 
only possible in 6 configurations using GR(1) 
Synthesis. On the other hand, RL was able to obtain 
a controller that solved the problem in all 
configurations. GR(1) Synthesis algorithmically explores 
all states of obstacles and agents to generate a 
controller that realizes the agent's goal. This controller 
never gets caught by obstacles over infinite behaviors 
(in other words, infinite sequences of discretized 
states). Due to this characteristic, the controller 
generated by GR(1) Synthesis fully realizes the 
requirements. However, since GR(1) Synthesis checks 
the realizability for all states of the system and 
environment, if there exists even a single case that is 
unrealizable (i.e., the system's goal cannot be 
achieved), it fails to generate a controller at all.

Table 1. Comparison with GR(1) synthesis and RL

Size Glitches
Synthesizable
(GR(1) synthesis)

Average steps
(RL)

8 1 Yes 17
8 2 No 16
16 5 Yes 41
16 6 No 37
24 9 Yes 42
24 10 No 44
32 13 Yes 54
32 14 No 60
48 21 Yes 70
48 22 No 71
64 29 Yes 93
64 30 No 95

The controller obtained through RL was able to 
solve all problems. However, if the controller 
generated by GR(1) Synthesis is considered optimal, 
then the controller obtained through RL is the best. 
This is because it approximates the functions of the 
environment and system, and there can certainly be 
cases where the agent's goal cannot be achieved. 
Therefore, as seen in Table 1, the average steps of 
the agent for each configuration are presented. This 
can be understood as the minimum performance 
guaranteed in that configuration (in this case, not 
being caught by obstacles). However, since it is not a 
controller that is realizable in infinite behaviors like 
GR(1) Synthesis, measures will be needed for 
exceptions or situations where the agent's goal fails.

In summary, the theoretical difference between 
GR(1) Synthesis and RL lies in how they model the 
input-output relation of the environment and the 
system.

GR(1) Synthesis generates an optimal function for 
the input-output relation of the system. This function 
defines the optimal action that the system should take 
for all possible states of the environment. The 
advantage of this method is that it predefines the 
system's actions for all possible environmental states, 
so there is little computation needed to make decisions 
at runtime. However, the downside of this method is 



20 Generating Controller of GR(1) Synthesis and Reinforcement Learning in Game-Solving

that it requires a lot of computation to generate this 
function if the state space is large, as it needs to 
predefine actions for all possible environmental states.

On the other hand, RL generates a function that 
approximates the input-output relation of the system, 
and this function is updated iteratively using a loss 
function. This function predicts the action that the 
system should take for a given environmental state. 
The advantage of RL is that it can learn efficiently 
even if the state space is large. However, the 
downside of this method is that it requires a lot of 
trial and error in the learning process, and there is no 
guarantee that the learned policy is optimal.

Therefore, the choice between GR(1) Synthesis and 
RL depends on the characteristics of the problem and 
the available computational resources. GR(1) Synthesis 
is suitable for cases where the state space is small 
and an optimal solution needs to be found, while RL 
is suitable for cases where the state space is large and 
finding an approximate solution is sufficient.

Ⅴ. Conclusion

In conclusion, this paper presented a comparative 
study of GR(1) Synthesis and RL in the context of 
controller synthesis for the Moving Obstacle Evasion 
Problem. The study demonstrated that while GR(1) 
Synthesis provides an optimal solution when it is 
realizable, it fails to generate a controller in certain 
configurations. On the other hand, RL, though not 
providing an optimal solution, is capable of generating 
a controller in all configurations, offering the 
best-effort solution.

The research highlighted the strengths and 
weaknesses of both methods. GR(1) Synthesis, 
grounded in formal methods, guarantees the realization 
of the system's goals under all possible behaviors of 
the environment, given that the synthesis is realizable. 
GR(1) Synthesis faces a challenge when the state 
space of the environment and system is large, as the 

computational load increases exponentially. This is due 
to the fact that GR(1) Synthesis attempts to predefine 
the controller's actions for all possible states of the 
environment and system. While this method of 
predefining actions for all states is effective when the 
state space is small, it becomes computationally 
intensive and difficult to solve real problems as the 
state space grows.

On the other hand, RL can address this limitation 
of GR(1) Synthesis. Reinforcement learning provides a 
method that can efficiently learn even when the state 
space is large. RL approximates a function of the 
states of the environment and system, predicting the 
actions the system should take given a state. By 
approximating this function, RL can efficiently solve 
problems even when the state space is large. However, 
the solutions generated by RL do not offer the same 
guarantees as those generated by GR(1) Synthesis.

The primary contribution of this paper is the 
demonstration of the applicability of Reinforcement 
Learning (RL) in scenarios where GR(1) Synthesis is 
unrealizable. This opens up new possibilities for 
controller synthesis in complex environments where 
traditional formal methods may fall short. Furthermore, 
this study shows that RL succeeds in all 
configurations, providing solutions even in 
configurations where GR(1) Synthesis fails to generate 
a controller, albeit with suboptimal solutions. This 
suggests that RL can be an appropriate choice in 
scenarios with large state spaces and where finding an 
optimal solution is challenging. Additionally, this study 
provides valuable insights for researchers and 
practitioners in the field of controller synthesis, 
offering a new perspective on the potential of RL as 
a complementary approach to formal methods. These 
results demonstrate that RL can overcome the 
limitations of GR(1) Synthesis and serve as a 
powerful tool for generating controllers in larger state 
spaces and more complex problems. This presents a 
new paradigm for controller synthesis and is expected 
to stimulate further research in this field.
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In terms of future work, this study opens up 
several promising directions. Firstly, while the current 
study has focused on the Moving Obstacle Evasion 
Problem, the comparative approach of GR(1) Synthesis 
and Reinforcement Learning could be extended to 
other types of control problems. It would be 
interesting to investigate how the two methods perform 
in different problem settings and whether the 
advantages of Reinforcement Learning observed in this 
study hold in other contexts. Secondly, the 
Reinforcement Learning method used in this study is a 
basic implementation. There are many advanced 
Reinforcement Learning algorithms and techniques that 
could potentially improve the performance of the 
controller. Future work could explore the use of these 
advanced methods and compare their performance with 
GR(1) Synthesis. Thirdly, this study has used a 
specific set of parameters for the Reinforcement 
Learning algorithm. The choice of parameters can 
significantly affect the performance of the algorithm. 
Future work could investigate the impact of different 
parameter settings on the results. Lastly, this study has 
considered a deterministic environment. In many 
real-world situations, the environment is stochastic and 
unpredictable. Future work could explore how GR(1) 
Synthesis and Reinforcement Learning perform in such 
stochastic environments. By exploring these directions, 
future work can build on the findings of this study 
and further our understanding of the strengths and 
weaknesses of GR(1) Synthesis and Reinforcement 
Learning in controller generation.
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