
Journal of KIIT. Vol. 21, No. 7, pp. 13-22, Jul. 31, 2023. pISSN 1598-8619, eISSN 2093-7571 13

* Dept. of Computer Science, Kyonggi University
- ORCID1: https://orcid.org/0000-0002-4942-247X
- ORCID2: https://orcid.org/0000-0002-8221-4939

ž Received: Jun. 23, 2023, Revised: Jun. 30, 2023, Accepted: Jul. 03, 2023
ž Corresponding Author: Ryeonggu Kwon
 Dept. of Computer Science, Kyonggi University, 154-42,
 Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, South Korea
 Tel.: +82-31-249-9666, Email: rkkwon@kyonggi.ac.kr

Generating Controller of GR(1) Synthesis and Reinforcement
Learning in Game-Solving

Ryeonggu Kwon*1, Gihwon Kwon*2

This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP)
grant funded by the Korean government (MSIT) (No. 2021-0-00122, Safety Analysis and Verification Tool Technology

Development for High Safety Software Development)

Abstract

This paper presents a comparative study of GR(1) Synthesis and Reinforcement Learning in the context of
controller generation for the Moving Obstacle Evasion Problem. GR(1) Synthesis, a formal method in computer
science, provides a systematic approach to automatically generate a controller that satisfies a given set of logical
specifications. On the other hand, Reinforcement Learning, a type of machine learning, approximates the optimal
solution by learning from the environment and updating its strategy based on a loss function. While GR(1) Synthesis
guarantees an optimal solution, it may fail to generate a controller in certain configurations. In contrast,
Reinforcement Learning can provide a suboptimal but feasible solution in all configurations. The results demonstrate
the potential of Reinforcement Learning as a viable alternative for controller generation in scenarios where GR(1)
Synthesis is unrealizable. This study contributes to the understanding of the strengths and limitations of both methods
and provides insights for their application in system design.

요 약

이 논문은 이동 장애물 회피 문제에 대한 컨트롤러 생성을 위한 GR(1) Synthesis와 강화 학습의 비교 연구

를 제시한다. 컴퓨터 과학의 정형 합성인 GR(1) Synthesis는 주어진 논리적 명세를 만족하는 컨트롤러를 자동

으로 생성하는 체계적인 접근법을 제공한다. 반면에, 기계 학습의 한 유형인 강화 학습은 환경에서 학습하고

손실 함수를 기반으로 전략을 업데이트함으로써 최적의 해를 근사화한다. GR(1) Synthesis는 최적의 해를 보장

하지만, 특정 구성에서는 컨트롤러를 생성하지 못할 수 있다. 반면에, 강화 학습은 모든 구성에서 최적이 아닌

실행 가능한 최선의 해를 제공할 수 있다. 결과적으로 GR(1) Synthesis가 실현 불가능한 시나리오에서 컨트롤

러 생성을 위한 강화 학습의 잠재력을 보여준다. 이 연구는 두 방법의 장점과 한계에 대한 이해에 기여하고

시스템 설계에서의 그들의 응용에 대한 통찰력을 제공한다.

Keywords
gr(1) synthesis, reinforcement learning, controller synthesis, formal method, artificial intelligence

http://dx.doi.org/10.14801/jkiit.2023.21.7.13

https://crossmark.crossref.org/dialog/?doi=10.14801/jkiit.2023.21.7.13&domain=http://ki-it.com/&uri_scheme=http:&cm_version=v1.5

14 Generating Controller of GR(1) Synthesis and Reinforcement Learning in Game-Solving

Ⅰ. Introduction

Generalized Reactivity(1) (GR(1)) Synthesis has
been a significant tool in the automatic generation of
controllers that satisfy a given set of logical
specifications[1][2]. Since its inception, it has provided
a systematic approach to describe the desired behavior
of a system in response to its environment. The
theoretical foundation of GR(1) Synthesis lies in the
intersection of logic, automata, and system design. It
uses a fragment of Linear Temporal Logic(LTL)[3] to
express properties about the future behavior of a
system, translating these logical specifications into an
automaton, a mathematical model of computation. The
automaton represents the system's behavior as a
state-transition graph, where the system and the
environment interact. The goal of GR(1) Synthesis is
to design a controller for the system that ensures the
system's behavior satisfies the given specifications,
regardless of the environment's actions.

On the other hand, Reinforcement Learning
(RL)[4]-[6] is a type of machine learning where an
agent learns to make decisions by interacting with its
environment. The agent learns from the consequences
of its actions, rather than from being explicitly taught,
adjusting its behavior based on the positive or
negative feedback it receives. This trial-and-error
approach allows the agent to learn the optimal policy
that maximizes the cumulative reward over time.
Reinforcement learning has been successfully applied
in various fields such as game playing, robotics,
resource management, and many others.

From the perspective of system controller
generation, comparing GR(1) Synthesis and
Reinforcement Learning is meaningful. While GR(1)
Synthesis provides an optimal solution by exploring all
possible states of the system and the environment,
Reinforcement Learning offers a suboptimal but
feasible solution even in large state spaces where
finding an optimal solution is computationally

infeasible.
The contributions of this paper are manifold and

significant to the field of controller generation. Firstly,
this paper presents a novel comparative study of
GR(1) Synthesis and Reinforcement Learning, two
methods that have been traditionally studied in
isolation. By juxtaposing these two methods in the
context of the Moving Obstacle Evasion Problem, this
paper provides new insights into their relative
strengths and weaknesses. Secondly, this paper
demonstrates, through empirical results, that
Reinforcement Learning can serve as a viable
alternative to GR(1) Synthesis in scenarios where the
latter is unrealizable. This is a significant finding as it
expands the range of problems that can be effectively
addressed using Reinforcement Learning. Thirdly, this
paper provides a detailed analysis of the performance
of the controllers generated by both methods. The
analysis reveals that while GR(1) Synthesis generates
optimal controllers, Reinforcement Learning generates
suboptimal but satisfactory controllers. This finding
contributes to our understanding of the trade-offs
between optimality and realizability in controller
generation. Lastly, this paper suggests that in scenarios
with large state spaces and where finding an optimal
solution is challenging, Reinforcement Learning can be
an appropriate choice. This is a valuable insight for
practitioners in the field, guiding them in choosing the
most suitable method for their specific problem setting.
In sum, this paper makes significant contributions to
the field by providing a comprehensive comparison of
GR(1) Synthesis and Reinforcement Learning,
demonstrating the viability of Reinforcement Learning
as an alternative to GR(1) Synthesis, and offering
valuable insights into the trade-offs in controller
generation.

In conclusion, this paper provides a comparative
study between GR(1) Synthesis and RL from the
perspective of system controller generation, highlighting
the strengths and weaknesses of both methods and

Journal of KIIT. Vol. 21, No. 7, pp. 13-22, Jul. 31, 2023. pISSN 1598-8619, eISSN 2093-7571 15

offering insights into their applicability in different
scenarios.

The structure of this paper is as follows. In
Chapters 2 and 3, the theoretical backgrounds of
GR(1) Synthesis and RL are introduced. Chapter 4
describes the experiment of solving the Moving
Obstacle Evasion Problem using reinforcement learning.
Finally, Chapter 5 concludes with a summary and
conclusion.

Ⅱ. Generalized Reactivity(1) Synthesis

GR(1) synthesis is a formal method in computer
science that provides a systematic approach to
automatically generate a controller, a strategy, plan, or
policy, that satisfies a given set of logical
specifications. These specifications describe the desired
behavior of a system in response to its environment.
The theoretical foundation of GR(1) synthesis lies in
the intersection of logic, automata, and system design.
The specifications for the system are expressed in a
logical formalism using variables to represent the state
of the system and logical conditions to describe how
these variables evolve over time. The logic used in
GR(1) synthesis is a fragment of LTL, which allows
expressing properties about the future behavior of a
system.

The logical specifications are translated into an
automaton, a mathematical model of computation. The
automaton represents the system's behavior as a
state-transition graph. In the context of GR(1) synthesis,
the automaton is a game structure where two players,
the system and the environment, interact. The goal of
GR(1) synthesis is to design a controller for the system
that ensures the system's behavior satisfies the given
specifications, regardless of the environment's actions.
This is achieved by constructing a winning strategy for
the system in the game structure.

The term generalized reactivity(1) refers to the class
of specifications that GR(1) synthesis can handle.

These specifications consist of assumptions about the
environment and guarantees about the system's
behavior. The assumptions and guarantees are
expressed as LTL formulas. The 1 in GR(1) indicates
that the synthesis problem can be solved in
polynomial time in the size of the game structure,
making GR(1) synthesis a practical method for
controller synthesis in many applications.

A GR(1) specification is a type of specification
used in the field of formal methods, particularly in
the context of controller synthesis. It is a fragment of
LTL that allows for the expression of assumptions
about the environment and guarantees about the
system's behavior. The GR(1) specification is used to
describe the desired behavior of a system in response
to its environment.

The GR(1) specification is structured as follows: It
consists of environment variables and system
variables . The environment variables represent the
state of the environment in which the system operates,
and the system has no control over these variables;
they are determined by external factors. The system
variables represent the state of the system, and the
system has control over these variables and can
change them in response to the environment.

The GR(1) specification also includes initial
conditions , transition relations , and guarantees . The initial conditions are a propositional logic

formula over ∪ that specifies the initial state of
the system and the environment. The transition
relations is sub-formula ∧ , where is a

formula in LTL over ∪∪′ and is a

formula in LTL over ∪∪′∪′. Here, ′ and ′ represent the next state of the environment and
system variables, respectively. specifies the

possible transitions of the environment variables, and specifies the possible transitions of the system

variables in response to the current state of the
system and the environment.

The guarantees are a sub-formula ∧ , where

16 Generating Controller of GR(1) Synthesis and Reinforcement Learning in Game-Solving

 and are sets of LTL formulas over ∪ .

The formulas in are called justice requirements,

and the formulas in are called progress

requirements. The justice requirements specify
conditions that the system must satisfy infinitely often,
and the progress requirements specify conditions that
the system must eventually satisfy.

In the context of GR(1) specifications, the terms
realizable and unrealizable refer to whether a controller
can be synthesized that satisfies the given
specifications.

A GR(1) specification is said to be realizable if
there exists a controller that, for every possible
behavior of the environment that satisfies the
environment assumptions, can ensure the system
behavior satisfies the system guarantees. In other
words, a realizable specification is one for which there
exists a winning strategy for the system in the game
structure defined by the specification.

Formally, a GR(1) specification ∧∧ is

realizable if there exists a function → such
that for every sequence …. of environment
states that satisfies the environment transition relation , the sequence … of system states

defined by for ≥ satisfies the
system transition relation and the system

guarantees .
On the other hand, a GR(1) specification is said to

be unrealizable if no such controller exists. That is,
no matter what strategy the system follows, there is
some behavior of the environment that satisfies the
environment assumptions but leads to a violation of
the system guarantees. An unrealizable specification is
one for which the environment has a winning strategy
in the game structure defined by the specification.

Ⅲ. Reinforcement Learning

RL is a subfield of machine learning that focuses

on how an agent can learn to make optimal decisions
by interacting with an environment. The fundamental
goal of RL is to find a policy, denoted as , which
is a mapping from states to actions →, that
maximizes the expected cumulative reward over time.
The agent, through a process of trial and error, learns
to associate states of the environment with actions that
yield the highest reward.

The general model of RL involves several key
components: states , actions , and rewards . The
agent interacts with the environment in discrete time
steps. At each time step , the agent observes the
current state of the environment ∈ , selects an
action ∈ based on its policy , receives a
reward , and transitions to a new state . The process continues until a termination

condition is met.
In RL, the process of approximating a function

often involves the use of a loss function. The loss
function quantifies the difference between the predicted
output of the function approximator and the actual
output. The goal is to adjust the parameters of the
function approximator to minimize this loss.

Let's denote the function approximator as , which
is parameterized by . Given an input state , the
function approximator predicts the value of each
possible action a under the current policy , denoted
as .

The actual value of taking action in state
under policy , denoted as ∙ , is typically
estimated using a technique such as Temporal
Difference(TD) learning or Monte Carlo methods.

The loss function is then defined as the
squared difference between the predicted and actual
action values:

 ∙ (1)

The expectation E is taken over the distribution of
states and actions experienced by the agent.

Journal of KIIT. Vol. 21, No. 7, pp. 13-22, Jul. 31, 2023. pISSN 1598-8619, eISSN 2093-7571 17

The parameters of the function approximator are
updated to minimize this loss. This is typically done
using gradient descent, a popular optimization
algorithm. The update rule for gradient descent is:

←∙∇ (2)

where is the learning rate, and ∇ is the
gradient of the loss function with respect to the
parameters .

By iteratively applying this update rule, the function
approximator learns to better predict the action values,
and thus the agent learns to make better decisions.

Ⅳ. Experimentation

4.1 Methodology

This research aims to compare the effectiveness and
efficiency of GR(1) Synthesis and RL in generating
controllers for the same problem. The experimental
setup and procedure are detailed as follows:
1. The GR(1) Synthesis is performed using the

Spectra[7] tool, which is an Eclipse plugin-based
tool. The results obtained from the GR(1) Synthesis
will be cited from relevant reports. For RL, we
use the PyTorch-based Stable-baselines3[8] with the
Proximal Policy Optimization (PPO)[9] algorithm.

2. The requirements of the identical problem are
defined and programmed to suit RL. This step
ensures that both GR(1) Synthesis and RL are
applied to the same problem, allowing for a fair
comparison.

3. The parameters of the problem are set for the RL
process. And then the trained model is evaluated.

4. The outcomes of the RL approach are subsequently
juxtaposed with those of the GR(1) Synthesis in
several respects. One of the key comparisons made
is to examine instances where the GR(1) Synthesis
was deemed unrealizable and thus failed to

generate a controller. In these specific scenarios,
the question posed is whether RL could step in
and successfully generate a controller where GR(1)
Synthesis could not. This comparison provides a
valuable perspective on the relative strengths and
potential limitations of each method in the context
of controller generation.

4.2 Problem formulation

The Moving Obstacle Evasion Problem[10] is
defined on an n-size discrete grid where an agent
must avoid a moving obstacle. Initially, the agent is
located at grid (0, 0) and occupies one cell. In
contrast, the obstacle occupies a 2x2 cell area and is
defined by the top-left cell, thus it is located at (n-1,
n-1). The agent and the obstacle take turns moving in
one of four directions: left, right, up, or down. The
agent can move twice in one turn, while the obstacle
moves one cell after the agent has moved twice,
under the basic settings. However, a glitch is
introduced in this problem where the obstacle can
violate the basic settings and move immediately after
the agent has moved once. To account for this, a
glitch count is defined, which allows the obstacle to
violate the basic settings a certain number of times.

List 1 defines the variables necessary for RL of
this problem, as well as the action space and
observation space. In this context, SIZE represents the
length of the cells along the x and y axes of the
grid. GLITCHES denotes the number of glitches
allowed for the obstacle. GLITCH_COUNTER keeps
track of the number of glitches used so far.
AGENT_TURN indicates the number of times the
agent has moved in its turn. The ACTION_SPACE is
discretized and takes a value from 0 to 4 at each
step, representing STAY, LEFT, RIGHT, UP, and
DOWN respectively. The OBSERVATION_SPACE is
defined by the x and y coordinates of the obstacle
and the x and y coordinates of the agent.

18 Generating Controller of GR(1) Synthesis and Reinforcement Learning in Game-Solving

Fig. 1. Environment of the problem

List 1. Definitions of parameters

SIZE := N
GLITCHES := M
ACTION_SPACE := {STAY, LEFT, RIGHT, UP,

DOWN}
OBERVATION_SPACE := (N, N, N-1, N-1)

The procedure STEP(ACTION) is defined to
represent a single step in the environment based on
the action taken by the agent. The action is passed as
a parameter to this procedure. The agent's location is
updated based on the action taken by calling the
UPDATE_AGENT_LOCATION procedure. The
AGENT_TURN counter is then incremented to keep
track of the number of moves made by the agent in
its turn. A conditional check is performed to see if
it's still the agent's turn (i.e., the agent has moved
less than twice) and if the number of glitches used is
less than the maximum allowed glitches. If both
conditions are met, a random choice is made to
decide if a glitch occurs. If a glitch occurs, the
obstacle's location is updated by calling the
UPDATE_OBSTACLE_LOCATION procedure. The
GLITCHES_COUNTER is incremented to keep track
of the number of glitches used so far, and the
AGENT_TURN counter is reset to 0, indicating the
start of a new turn for the agent. If it's not the
agent's turn or if the maximum number of allowed
glitches has been reached, the obstacle's location is
updated, and the AGENT_TURN counter is reset to 0.
Next, a check is performed to see if the agent and
the obstacle are not in the same location or adjacent

locations. If they are not, a reward of 1 is given, and
the TERMINATED flag is set to False, indicating that
the episode is not over. If the agent and the obstacle
are in the same location or adjacent locations, the
TERMINATED flag is set to True, indicating that the
episode is over. Finally, the current state of the
environment, the reward, and the TERMINATED flag
are returned as the output of the STEP procedure. The
state represents the current locations of the agent and
the obstacle, the reward is the reward obtained in this
step, and the TERMINATED flag indicates whether
the episode is over.

List 2. Procedure for step function

4.3 Result and analysis

We conducted RL using PPO for a total of 12

Procedure STEP(ACTION):
Call UPDATE_AGENT_LOCATION(ACTION)
AGENT_TURN ← AGENT_TURN + 1

If AGENT_TURN < 2 and GLITCHES_COUNTER
< GLITCHES Then

IS_GLITCH ← {True, False}
If IS_GLITCH is True Then

Call UPDATE_OBSTACLE_LOCATION
GLITCHES_COUNTER ←

GLITCHES_COUNTER + 1
AGENT_TURN ← 0

End If
Else
Call UPDATE_OBSTACLE_LOCATION
AGENT_TURN ← 0

End If

If the agent and the obstacle are not in the same
location or adjacent locations Then
REWARD ← 1
TERMINATED ← False

Else
TERMINATED ← True

End If

Return STATE, REWARD, TERMINATED
End Procedure

Journal of KIIT. Vol. 21, No. 7, pp. 13-22, Jul. 31, 2023. pISSN 1598-8619, eISSN 2093-7571 19

configurations, ranging from a configuration with a
grid size of 8 and 1 glitch count to a configuration
with 64 and 30 respectively. The results can be seen
in Figure 2. From the graph, we were able to obtain
a controller that can solve the problem for all
configurations. Since the agent receives a reward of 1
for each successful step, the total amount of reward
obtained can be understood as equivalent to the
number of steps taken.

Fig. 2. Evaluation result

We will compare this with the results obtained
using GR(1) Synthesis for the same problem. The
following Table 1 presents a comparison with the
results of RL.

Out of a total of 12 configurations, synthesis was
only possible in 6 configurations using GR(1)
Synthesis. On the other hand, RL was able to obtain
a controller that solved the problem in all
configurations. GR(1) Synthesis algorithmically explores
all states of obstacles and agents to generate a
controller that realizes the agent's goal. This controller
never gets caught by obstacles over infinite behaviors
(in other words, infinite sequences of discretized
states). Due to this characteristic, the controller
generated by GR(1) Synthesis fully realizes the
requirements. However, since GR(1) Synthesis checks
the realizability for all states of the system and
environment, if there exists even a single case that is
unrealizable (i.e., the system's goal cannot be
achieved), it fails to generate a controller at all.

Table 1. Comparison with GR(1) synthesis and RL

Size Glitches
Synthesizable
(GR(1) synthesis)

Average steps
(RL)

8 1 Yes 17
8 2 No 16
16 5 Yes 41
16 6 No 37
24 9 Yes 42
24 10 No 44
32 13 Yes 54
32 14 No 60
48 21 Yes 70
48 22 No 71
64 29 Yes 93
64 30 No 95

The controller obtained through RL was able to
solve all problems. However, if the controller
generated by GR(1) Synthesis is considered optimal,
then the controller obtained through RL is the best.
This is because it approximates the functions of the
environment and system, and there can certainly be
cases where the agent's goal cannot be achieved.
Therefore, as seen in Table 1, the average steps of
the agent for each configuration are presented. This
can be understood as the minimum performance
guaranteed in that configuration (in this case, not
being caught by obstacles). However, since it is not a
controller that is realizable in infinite behaviors like
GR(1) Synthesis, measures will be needed for
exceptions or situations where the agent's goal fails.

In summary, the theoretical difference between
GR(1) Synthesis and RL lies in how they model the
input-output relation of the environment and the
system.

GR(1) Synthesis generates an optimal function for
the input-output relation of the system. This function
defines the optimal action that the system should take
for all possible states of the environment. The
advantage of this method is that it predefines the
system's actions for all possible environmental states,
so there is little computation needed to make decisions
at runtime. However, the downside of this method is

20 Generating Controller of GR(1) Synthesis and Reinforcement Learning in Game-Solving

that it requires a lot of computation to generate this
function if the state space is large, as it needs to
predefine actions for all possible environmental states.

On the other hand, RL generates a function that
approximates the input-output relation of the system,
and this function is updated iteratively using a loss
function. This function predicts the action that the
system should take for a given environmental state.
The advantage of RL is that it can learn efficiently
even if the state space is large. However, the
downside of this method is that it requires a lot of
trial and error in the learning process, and there is no
guarantee that the learned policy is optimal.

Therefore, the choice between GR(1) Synthesis and
RL depends on the characteristics of the problem and
the available computational resources. GR(1) Synthesis
is suitable for cases where the state space is small
and an optimal solution needs to be found, while RL
is suitable for cases where the state space is large and
finding an approximate solution is sufficient.

Ⅴ. Conclusion

In conclusion, this paper presented a comparative
study of GR(1) Synthesis and RL in the context of
controller synthesis for the Moving Obstacle Evasion
Problem. The study demonstrated that while GR(1)
Synthesis provides an optimal solution when it is
realizable, it fails to generate a controller in certain
configurations. On the other hand, RL, though not
providing an optimal solution, is capable of generating
a controller in all configurations, offering the
best-effort solution.

The research highlighted the strengths and
weaknesses of both methods. GR(1) Synthesis,
grounded in formal methods, guarantees the realization
of the system's goals under all possible behaviors of
the environment, given that the synthesis is realizable.
GR(1) Synthesis faces a challenge when the state
space of the environment and system is large, as the

computational load increases exponentially. This is due
to the fact that GR(1) Synthesis attempts to predefine
the controller's actions for all possible states of the
environment and system. While this method of
predefining actions for all states is effective when the
state space is small, it becomes computationally
intensive and difficult to solve real problems as the
state space grows.

On the other hand, RL can address this limitation
of GR(1) Synthesis. Reinforcement learning provides a
method that can efficiently learn even when the state
space is large. RL approximates a function of the
states of the environment and system, predicting the
actions the system should take given a state. By
approximating this function, RL can efficiently solve
problems even when the state space is large. However,
the solutions generated by RL do not offer the same
guarantees as those generated by GR(1) Synthesis.

The primary contribution of this paper is the
demonstration of the applicability of Reinforcement
Learning (RL) in scenarios where GR(1) Synthesis is
unrealizable. This opens up new possibilities for
controller synthesis in complex environments where
traditional formal methods may fall short. Furthermore,
this study shows that RL succeeds in all
configurations, providing solutions even in
configurations where GR(1) Synthesis fails to generate
a controller, albeit with suboptimal solutions. This
suggests that RL can be an appropriate choice in
scenarios with large state spaces and where finding an
optimal solution is challenging. Additionally, this study
provides valuable insights for researchers and
practitioners in the field of controller synthesis,
offering a new perspective on the potential of RL as
a complementary approach to formal methods. These
results demonstrate that RL can overcome the
limitations of GR(1) Synthesis and serve as a
powerful tool for generating controllers in larger state
spaces and more complex problems. This presents a
new paradigm for controller synthesis and is expected
to stimulate further research in this field.

Journal of KIIT. Vol. 21, No. 7, pp. 13-22, Jul. 31, 2023. pISSN 1598-8619, eISSN 2093-7571 21

In terms of future work, this study opens up
several promising directions. Firstly, while the current
study has focused on the Moving Obstacle Evasion
Problem, the comparative approach of GR(1) Synthesis
and Reinforcement Learning could be extended to
other types of control problems. It would be
interesting to investigate how the two methods perform
in different problem settings and whether the
advantages of Reinforcement Learning observed in this
study hold in other contexts. Secondly, the
Reinforcement Learning method used in this study is a
basic implementation. There are many advanced
Reinforcement Learning algorithms and techniques that
could potentially improve the performance of the
controller. Future work could explore the use of these
advanced methods and compare their performance with
GR(1) Synthesis. Thirdly, this study has used a
specific set of parameters for the Reinforcement
Learning algorithm. The choice of parameters can
significantly affect the performance of the algorithm.
Future work could investigate the impact of different
parameter settings on the results. Lastly, this study has
considered a deterministic environment. In many
real-world situations, the environment is stochastic and
unpredictable. Future work could explore how GR(1)
Synthesis and Reinforcement Learning perform in such
stochastic environments. By exploring these directions,
future work can build on the findings of this study
and further our understanding of the strengths and
weaknesses of GR(1) Synthesis and Reinforcement
Learning in controller generation.

References

[1] R. Majumdar, N. Piterman, and A.-K. Schmuck,
"Environmentally-Friendly GR (1) Synthesis",
TACAS 2019: Tools and Algorithms for the
Construction and Analysis of Systems, Vol. 11428,
pp. 229-246, Apr. 2019. https://doi.org/10.1007/
978-3-030-17465-1_13.

[2] U. Klein and A. Pnueli, "Revisiting Synthesis of
GR(1) Specifications", HVC 2010: Hardware and
Software: Verification and Testing, Vol. 6504, pp.
161-181, 2010. https://doi.org/10.1007/978-3-642-
19583-9_16.

[3] A. Pnueli, "The temporal logic of programs", 18th
Annual Symposium on Foundations of Computer
Science (sfcs 1977), Providence, RI, USA, pp.
46-57, Oct. 1977. https://doi.org/10.1109/SFCS.
1977.32.

[4] R. S. Sutton and A. G. Barto, "Reinforcement
Learning: An Introduction", IEEE Transactions on
Neural Networks, Vol. 9, No. 5, pp. 1054, Sep.
2018. https://doi.org/10.1109/TNN.1998.712192.

[5] L. P. Kaelbling, M. L. Littman, and A. W. Moore,
"Reinforcement Learning: A Survey", Journal of
Artificial Intelligence Research, Vol. 4, pp.
237-285, May 1996, https://doi.org/10.1613/jair.301.

[6] J. Kober, J. A. Bagnell, and J. Peters,
"Reinforcement learning in robotics: A survey",
The International Journal of Robotics Research,
Vol. 32, No. 11, pp. 1238-1274, Aug. 2013.
https://doi.org/10.1177/0278364913495721.

[7] S. Maoz and J. O. Ringert, "Spectra: a specification
language for reactive systems", Software and
Systems Modeling, pp. 1553-1586, Apr. 2021.
https://doi.org/10.1007/s10270-021-00868-z.

[8] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M.
Ernestus, and N. Dormann, "Stable-baselines3:
Reliable reinforcement learning implementations",
The Journal of Machine Learning Research, Vol.
22, No. 1, pp. 12348-12355, Jan. 2021.

[9] J. Schulman, F. Wolski, P. Dhariwal, A. Radford,
and O. Klimov, "Proximal policy optimization
algorithms", arXiv preprint arXiv:1707.06347, Jul.
2017. https://doi.org/10.48550/arXiv.1707.06347.

[10] M. Yossef, "Spectra Example: Moving Obstacle
Evasion Problem", 2020. [accessed: Jun. 10, 2023]

22 Generating Controller of GR(1) Synthesis and Reinforcement Learning in Game-Solving

Authors

Ryeonggu Kwon

2011 : BS degree in Department

of Computer Science, Kyonggi
University

2013 : MS degree in Department
of Computer Science, Kyonggi

University
2013 ~ Present : Ph.D. candidate

Research interests : software engineering, formal
verification, formal synthesis, artificial intelligence

Gihwon Kwon

1985 : BS degree in Department

of Computer Science, Kyonggi
University

1987 : MS degree in Department
of Computer Science,

Chung-Ang University
1991 : Ph.D. degree in

Department of Computer Science, Chung-Ang
University

1991 ~ Present : Professor, Department of Computer
Engineering, Kyonggi University

2006 ~ 2007 : Visiting Professor, Department of
Computer Science, Carnegie Mellon University

2014 ~ 2016 : President, Software Engineering Society,
Korean Institute of Information Scientists and

Engineers
2021 ~ Present : Director, SW Central University

Project Team, Kyonggi University
2022 ~ Present : Dean, College of Software Business,

Kyonggi University
Research interests : Software Engineering, Software

Safety

	Generating Controller of GR(1) Synthesis and Reinforcement Learning in Game-Solving
	Abstract
	요약
	Ⅰ. Introduction
	Ⅱ. Generalized Reactivity(1) Synthesis
	Ⅲ. Reinforcement Learning
	Ⅳ. Experimentation
	Ⅴ. Conclusion
	References

