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Abstract

Measuring the difference between two biological networks on a cellular level is infeasible. In order to compare 
3-dimensional (3D) biological networks, we need to devise a quantitative and efficient heuristic tool. This paper 
suggests using Two-Point Correlation Function (TPCF) as this heuristic tool. TPCF is the probability of two points 
being in a same region at the same time. Specifically, we developed the 3 dimensional TPCF in order to get 
characteristics of a 3D biological network. By transferring the characteristics of a biological network onto a 
2-dimensional space, we can identity the difference between biological networks in an easier way. In the future, we 
plan to develop a parameter that gives us a numerical value to imply the complexity of a 3-dimension biological 
fiber network.

요  약

세포 수준의 두 개의 서로 다른 생물학적 네트워크 사이의 차이를 측정하는 것은 불가능하다. 따라서, 3차
원적인 생물학적 네트워크들을 비교하기 위해서는 정량적이고 효율적인 발견적 방법을 고안해 낼 필요가 있

다. 이 논문은 그와 같은 발견적 방법을 위해 TPCF(Two-Point Correlation Function)을 이용하는 것을 제안한

다. TPCF는 두 개의 점이 동시에 같은 영역에 놓이게 될 확률로 정의된다. 특별히, 본 논문의 저자는 3차원적 

생물학적 네트워크의 특징을 특정하기 위한 3차원적 TPCF를 개발하였다. 본 논문은 3차원 TPCF를 이용하여 

얻어낸 생물학적 네트워크의 특징을 2차원 공간위로 투영함으로써, 보다 쉽게 생물학적 네트워크사이의 차이

를 식별할 수 있음을 보여준다. 이를 토대로, 3차원적 생물학적 섬유(Fiber) 네트워크의 복잡도를 암시할 수 있

는 수치적 값을 보여줄 수 있는 파라미터를 개발할 것을 제안한다.
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Ⅰ. Introduction

One purpose of tissue engineering is to develop 
hybrid tissue constructs that replace either a part of or 
the whole biological tissue. To offer support and 
shape, these hybrid tissue constructs often consist of 
cells embedded in fibrillar scaffolds that are made of 
micron-sized polymeric fibers. 

In tissue engineering, a biofactor (e.g., cells, genes, 
and proteins) is implanted into a porous degradable 
material called a scaffold. Scaffolds play an important 
role in tissue regeneration by preserving tissue volume, 
delivering biofactors, and providing temporary 
mechanical function [1]. Various materials (e.g., 
ceramic and polymers), especially polymers, have been 
used for tissue scaffolds. Polymers have been largely 
used for scaffold materials due to their excellent 
processing properties [2]. Fibrillar polymeric scaffolds, 
which are made of micron-sized polymeric fibers, have 
received widespread attention as versatile extracellular 
matrix-like materials that have induced a synthesis of 
tissues and organs, or cell carriers. These provide the 
structural support for cell attachment and subsequent 
tissue development.

Apparently, the polymeric fibers form a network 
which naturally exists as a 3-dimensional structure. 
Recognizing the level of complexity in a biological 
fiber network is one way to improve the quality of a 
hybrid tissue construct. In this paper, we propose a 
new method to simplify the characteristics of a 
3-dimensional biological fiber network onto a 
2-dimensional. This will allow us to compare any two 
3D biological fiber networks in an easier way. 
Specifically, our study utilizes this method in order to 
compare the complexities between biological networks 
(see the Fig. 3(a) for example) formed by poly-ε
-capro-lactone (PCL) fibers having diameters within 
the 5-20 µm range.

Ⅱ. Related Works

There have been previous several research studies 
that have compared biological networks by developing 
a parameter. Recently, Maria et al. [3] suggested 
several parameters based on a minimum spanning tree 
(MST) to determine the level of randomness (or 
regularity) of a child brain network. Extreme 
topologies of MSTs have a star-like tree on one end 
and a line-like tree on the other end. One specific 
parameter developed by them is a tree hierarchy 
parameter. Physically, the parameter has the purpose 
of balancing the reduction of longest paths between all 
nodes and overload prevention. The value of the 
parameter lies between 0 and 1. If the brain network 
is a line-like topology network, the value approaches 
0. If the brain network is a star-like topology, the 
value approaches 0.5. 

Centrality analysis is also useful for analyzing 
biological networks and helps us to understand the 
underlying biological process. For instance, Newman 
listed several different types of centralities in his 
survey [4]: degree centrality, eigenvector centrality, 
Katz centrality, closeness centrality and betweenness 
centrality. In degree centrality, an important node is 
involved in a large number of interactions. Physically, 
this centrality indicates how well a node is connected 
in terms of direct connections. This parameter can be 
seen as an index of the node's communication activity. 

In eigenvector centrality, a node is central if it has 
many central neighbors. Katz centrality, a general case 
of the degree centrality measures the number of all 
nodes that can be connected through a path while the 
contributions of distant nodes are penalized. In 
closeness centrality, an important node is typically 
close to, and can communicate quickly with, other 
nodes. It is based on proximity and measures how 
easily a node can reach other nodes in a network. 
Thus, it represents the measure of independence or 
efficiency of the node. Physically, it measures the 
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mean distance from a node to other nodes. Finally, 
betweenness centrality of a node refers the number of 
paths passing through the node. Betweenness centrality 
represents how important a node is in terms of 
connecting to other nodes. So, it is useful as an index 
of the potential of a node control over communication. 
Physically, it is the number of geodesic paths passing 
through a specific node.

Newman also proposed a ‘local clustering 
parameter’. This parameter, physically, indicates the 
average probability that a pair of a node u’s neighbors 
are neighbors to each other. In relation to the local 
clustering, the concept of a ‘structural hole’ deserve 
attention. The structural hole refers to the missing 
links between neighbors (we actually expect that those 
links exist). If the local clustering has a low value, it 
is believed that there exist many number of structural 
holes.

Aside from studies focusing on biological networks, 
there are several research studies in the literature on 
scale-free social networks. For example, Butts [5][6] 
discussed ‘covariance’ as well as ‘structural distance’ 
parameters based on the adjacent matrix. These 
parameters assume that the networks have the same 
size. Physically, the graph covariance is simply the 
covariance of the two adjacent matrices, taken as a 
collection of edge variables. We can compute the 
correlation with the covariance. Physically, this 
correlation parameter means that the existence of a 
specific edge between node u and node v is compared 
between adjacency matrices.

Regarding Two-point correlation function (TPCF), 
several properties of N-point probability functions were 
examined by Frisch et al. [7] and Torquator et al. [8]. 
R. Ridgway et al. [9] used a 2-dimensional TPCF in 
order to segment a mice placenta. F.Janoos et al. [10] 
improved the computation cost and the achieved high 
precision of segmentation on a 2D TPCF feature 
space. L. Cooper et al. [11] developed a new fast and 
deterministic method for 2D TPCF calculations. 

Since the bilogical network exists natually in a 
3-dimesinal space, we need to extend 2D TPCF to 3D 
TPCF. 

In the following section 3, we will discuss our 
proposed method and describe how we developed 
3-dimensional TPCF. Section 4 will present the results 
of our approach and a future direction.

III. Method

3.1 TPCF

There are two regions in our fiber network data. 
One is the region belonging to the foreground (that is, 
the inner area of a fiber). Let us call the foreground 
FG. The other is the region belonging to the 
background (that is, the area not recognized as fibers). 
Let us call the background BG. 

TPCF is a specific case of N-point correlation 
function (NPCF). The NPCF can be represented as 


  ⋯  where  is FG or BG. 

The 
  ⋯  represents the probability 

of  points at positions   ⋯  being located 

in the region  at the same time. Thus 
 as the 

one-point correlation function represents the probability 
of the position  belonging to the region . Likewise, 
the 

  as the TPCF is the probability of the 

two points   being in the region  at the same 
time. 

Any 3-dimensional image can be categorized by the 
NPCF 

 as following: statistically inhomogeneous or 

statistically homogeneous. If the value of 
 relies 

on the absolute locations   ⋯ , the 3D 
image is statistically inhomogeneous. If the value of 


 is invariant when the image is translated, the 3D 

image is statistically homogeneous. The statistically 
homogeneous 3D image can be divided further: 
anisotropic and isotropic. If 

 is affected by both 
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the orientation and the magnitudes of the vectors 
  ⋯  where  , the 3D image 
is statistically homogeneous but anisotropic. Finally, if 


 is invariant under rigid-body rotation of the 

spatial coordinates and depends on the distance , 
the 3D image is statistically homogeneous but 
isotropic. According to the categorizations above, our 
experimental fiber network data is ‘anisotropic’. 

Geometrically, 
 on a statistically homogeneous 

but anisotropic 3D image represents the probability of 
a polyhedron (located at positions   ⋯ ) 
lying in the region  when the polyhedron is 
randomly placed in the 3D image volume at a fixed 
orientation (i.e., over all translations of the polyhedron). 
In the isotropic 3D image, 

 represents, geometrically, 

the probability of a polyhedron just being randomly 
placed in the image, (i.e., over all translations and 
solid-body rotations of the polyhedron). Thus, if the 
3D image is statistically homogeneous, 

 is invariant 
when the image is translated and depends on 
    rather than an absolute position. Further, 
if the image is isotropic, 

 is invariant with rotation 

and only depends on a distance   . In this 
case, 

 can be expressed in terms of the distance  

as 
. 

3.2 3-dimensional TPCF


 characterizes the fiber structure in our 

experimental fiber network data. 
 is the 

probability of the endpoints of the line segment 
landing on FG after repeatedly throwing a line 

segment of length  within the 3D fiber network. 
Hence, the distribution of 

 depending on the 
value  represents the number of times that two points 
are correlated with each other in a given 3D fiber 
network. 

In order to express 
 in a mathematical 

form, we need an indicator function of the form of 
  where  is a voxel in a given image and   
is the realization of a fiber network. The indicator 
function is defined as: 

   ∈
 ∉

                (1)

In a 3D image of size,  ××, 
 can be 

calculated using an indicator autocorrelation   
which is defined as follows: 

 ∆∆∆       (2)








   ∆∆∆

where ∆∆∆∈Ƶ. Next, we normalize   to 
calculate the probabilities. The normalized autocorrelation 

with  is calculated as follows:




 ××××    (3)

where ×× is the ×× matrix filled with 
1,  represnts an elementwise division, and * 
represents convolution. 

Then, isotropic TPCF 
 can be calculated as:




∆


∆

 

∆





  






∆




                     (4)




∆sin∆∆sin∆∆  
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where ∆ and ∆ are angular intervals as shown in 
the following Fig. 1. By using the Eq. (4) we can 
sample the points of the autocorrelation matrix radially 
on a southern hemisphere of the Fig. 1.

The Fig. 2(b) shows the 3D TPCF distribution 
according to the distance  when it is applied on Fig. 
2(a). Fig. 2(d) is the 2D TPCF distribution according 
to the distance  when it is applied on Fig. 2(c).

Fig. 1. ∆ and ∆ as angular intervals used in the
calculation of in Eq. (4)

(a) Example of a 3D image (b) Eexample of a 2D image

(c) TPCF distribution of the 3D image in (a)

(d) TPCF distribution of the 2D image in (b)
Fig. 2. Examples of TPCF distributions

3.3 Transferring the 3D TPCF characterization

onto 2D space

In order to transfer the calculated  
characterization onto a 2D space, we generate a 
simple 2D image (Fig. 3(b)). 

By applying the 2D TPCF on the simple 2D 
image, we calculate the initial characterization  
of the simple 2D image. 

Now, we update  until  is the most 
similar to the target TPCF .

Mathematically, the updating process is defined as:

min


      
  (5)

In order to minimize the energy  in Eq. (5), we 
repeatedly exchange the locations of two randomly 
selected pixels on the 2D simple image (one pixel 
from the background and the other from foreground). 
That is, with every iteration, one foreground pixel 
becomes a background pixel and, at the same time, 
one background pixel becomes a foreground pixel.

After each iteration, we have an updated 2D simple 
image to be used to calculate an updated energy  ′. 
If the difference ∆  ′ is below a predefined 
threshold, we accept the exchange. Otherwise, we keep 
the previous simple 2D image. 

By iterating this process numerous times, we create 
a finalized updated 2D image with the cumulative 
directions to lower the cumulative energy. The 
finalized 2D image is the 2D visualization of the 
original 3D fiber network.

Fig. 3 shows an example of transferring the 3D 
TPCF characterization of the fiber network shown in 
Fig. 3(a) onto the 2D image shown in Fig. 3(b). Fig. 
3(c) is the distribution of  depending on the  in 
the 3D image shown in Fig. 3(a). Fig. 3(d) is the 
distribution of  depending on the  in the 2D 
image shown in Fig. 3(b).
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(a) Example of a 3D fiber network (b) Example of a 2D image

(c) TPCF distribution of the 3D fiber network in (a)

(d) TPCF distribution of the 2D image in (b)
Fig. 3. Example of transferring the 3D TPCF

characterization of the fiber network onto the 2D image

Fig. 4 (a)-(d) show the results of the visualization 
of the 3D fiber network in the 2D space based on the 
image in Fig. 3(b) with iterations of the energy 
minimization process.

Fig. 4(a) is the result after 10,000 iterations of the 
energy minimization process in Eq. (5). Likewise, Fig. 
4(b) is after 50,000 iterations, Fig. 4(c) after 100,000 
iterations, and Fig. 4(d) after 200,000 iterations.

Ⅳ. Results and Discussion

We applied our proposed methods described above 
on the 3D images shown in Fig. 5(a)-(c).

(a) (b)

(c) (d)
Fig. 4. Results of the visualization of the 3D fiber network
shown in Fig. 3(a) of the 2D space shown in Fig3. (b) by
iterating the energy minimization process shown in Eq. (5),
(a) Result of 10,000 iterations, (b) Result of 50,000
iterations, (c) Result of 100,000 iterations, (d) Result of

200,000 iterations

Those 3D images are produced with a confocal 
microscope. Their resolutions are 0.9 μm in width 
direction, 0.9 μm in height direction, and 0.6 μm in 
depth direction. In order to get the same resolution 
(0.9 μm) in all directions, we resampled the image in 
the depth direction.  

Then, we applied a Gaussian kernel to the 
resampled images in order to avoid noises. 

To compare the complexities between different 
biological fibers, we used the same initial simple 2D 
image shown in Fig. 5(d). 

After 90000 iterations in order to minimize the 
energy defined in Eq. (5), we obtained the results 
shown in Fig. 5(e)-(g): Fig. 5(e) is the 2D 
visualization of the fiber network shown in Fig. 5(a), 
Fig. 5(f) is the 2D visualization of the fiber network 
shown in Fig. 5(b), and Fig. 5(g) is the 2D 
visualization of the fiber network shown in Fig. 5(c).

As we notice in Fig. 5(a)-(c), the complexity of 
Fig. 5(a) is the highest among those 3 fiber network 
examples and the complexity of Fig. 5(c) is the 
lowest among those 3 examples. 
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(d)

(a) (e)

(b) (f)

(c) (g)
Fig. 5. Comparison of 3-dimensional biological fiber networks
on the 2-dimensional space, (a)-(c) 3D biological fiber
network images, (d) initial 2D image, (e) the 2D visualization
of (a) based on (d), (f) the 2D visualization of (b) based
on (d), (g) the 2D visualization of (c) based on (d)

On the other hand, as shown in Fig. 5(e)-(g), the 
distribution of the white pixels in Fig. 5(e) is spread 
over all the areas inside the 2D image space and the 
structure of the inner circle is well kept, while the 
distribution of the white pixels in Fig. 5(g) is instead 
toward the boundary of the 2D image space and the 
structure of the inner circle is collapsed. Therefore, we 

find noticeable differences on the 2D image space 
according to the complexity of the biological fiber 
network in two aspects, the distribution of the white 
pixels and the structure of the inner circle. 

We also conducted a quantitative analysis by 
comparing the number of the white pixels in a circle 
with a radius of 66 and whose center point is located 
in the center of a 2D image. The number of the 
white pixels in Fig. 5(d) is 13,673 which is almost 
equivalent to ∙. 

The following Table 1 shows the number of the 
white pixels in a circle with a radius of 66 and 
whose center point is located in the center of each 
image in Fig. 5(e)-(g). As we see in the Table 1, as 
the complexity of a 3D biological fiber network 
becomes sparse, the number of the white pixels within 
a circle is noticeably reduced. 

Table 1. Number of the white pixels in a circle of with a
radius of 66 whose center point is located in the middle
of each image of Fig. 5(e)-(g)

In Fig. 5(e) In Fig. 5(f) In Fig. 5(g)
1,408 893 212

Since the 3D biological fiber network contains 
depth information, it is normally difficult to compare 
those biological fiber networks directly. However, by 
transferring the characterization of the 3D biological 
fiber network onto a 2D space, we can make this 
comparison in a relatively easier way as seen in Fig. 
5(e)-(g).

In the future, we plan to develop a parameter that 
gives us a numerical value to imply the complexity of 
a 3-dimensional biological fiber network. Thus, we 
expect to be able to quantify the level of complexity. 

There are several research studies [12][13] on 
developing a special measure from TPCF  directly. 
Our approach differs from theirs in that we are 
researching a way to quantify the complexity of a 
biological fiber network by considering the two 
aspects: 1) the distribution of the white pixels, and 2) 
the structure of an inner circle on a 2D image space.
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