
Journal of KIIT. Vol. 19, No. 11, pp. 143-153, Nov. 30, 2021. pISSN 1598-8619, eISSN 2093-7571 143

 * Dongguk University, Department of Computer 
Science & Engineering

 - ORCID: https://orcid.org/0000-0001-7796-3938
** Dongguk University, Department of Computer 

Science & Engineering Professor
 - ORCID: https://orcid.org/0000-0001-8589-9403 

ž Received: Oct. 19, 2021, Revised: Nov. 04, 2021, Accepted: Nov. 07, 2021
ž Corresponding Author: Younsoon Shin
  Dongguk University, Department of Computer Science & Engineering
  Tel.: +82-2-2290-1676, Email: ysshin@dongguk.edu

Development of a Web Browser-based Character in Video
Metadata Generation Tool

Minjeong Kim*, Younsoon Shin**

This research was supported by the MSIT(Ministry of Science, ICT), Korea, under the High-Potential Individuals Global 
Training Program)(2021-0-01549) supervised by the IITP(Institute for Information & Communications Technology Planning 

& Evaluation)

Abstract

Until recently, activating in video platforms and streaming services, the need for managing metadata of videos is 
increasing day by day to offer deep learning services using these videos. The broadcaster manages the metadata of 
videos using the ‘Digital Asset Management System(DAMS)’, a program that saves and manages the metadata of 
videos. However, since non-professionals cannot use the program for videos they upload directly, they must manually 
create metadata for each video. But this method is inefficient. Therefore, this paper proposes detecting faces in a 
video, then recognizing the faces and automatically generating metadata that indexes the person and summarizes the 
time that the person appeared in the video through a web browser.

요  약

최근 영상 관련 플랫폼이나 스트리밍 서비스가 활성화되면서 이러한 영상들을 활용한 딥러닝 서비스를 제

공하기 위해서 영상들의 메타데이터를 관리하는 것에 대한 필요성 또한 나날이 증가하고 있다. 방송사에서는 

영상 콘텐츠들의 메타데이터를 저장하고 관리하는 프로그램인 ‘DAMS(Digital Asset Management System)’를 

사용하여 영상의 메타데이터를 관리하고 있다. 하지만 해당 프로그램은 일반인들이 직접 업로드하는 영상에서

는 사용할 수 없기 때문에, 해당 영상들은 수동으로 직접 각각의 영상에 대한 메타데이터를 만들어야 한다. 그

러나 이러한 방법은 비효율적이다. 따라서 본 논문에서는 비디오에서 얼굴을 감지한 후, 인식하여 등장인물을 

색인하고, 해당 인물이 영상 내에서 등장한 시간을 정리한 메타데이터를 웹 브라우저를 통해 자동으로 생성하

는 방법을 제안한다.

Keywords
metadata, face detection, face recognition, deep learning, indexing

http://dx.doi.org/10.14801/jkiit.2021.19.11.143

https://crossmark.crossref.org/dialog/?doi=10.14801/jkiit.2021.19.11.143&domain=http://ki-it.com/&uri_scheme=http:&cm_version=v1.5


144 Development of a Web Browser-based Character in Video Metadata Generation Tool

Ⅰ. Introduction

TV programs use numerous video footage suitable 
for the situation. These footage are used from as short 
as a few days ago to as long as decades ago. 
Broadcasting stations use the Digital Asset Management 
System(DAMS), a meta-information system that manages 
video data of the station, to easily search and utilize 
past video footage. DAMS generates and manages 
meta-information related to the video, such as the cast, 
the summary plot, and the description of each 
scene[1].

Recently, as video platforms such as ‘YouTube’ 
and ‘Instagram’ are activated in addition to TV 
programs, video data are rapidly increasing. The need 
for a service that generates metadata of personal video 
data to provide various deep learning services using 
these video data is also increasing day by day[2]. 
However, videos uploaded themselves still need to be 
manually produced information on the person index. 
This method is inefficient in terms of time and cost 
for use these days when image data are accumulated 
in large quantities[3].

Therefore, this paper proposes a method for easily 
generating metadata using image data uploaded by 
ordinary people. By using deep learning to detect and 
classify the face of the cast, it automatically generates 
indexed output images for the cast and time data 
when the cast appeared in the video.

In Chapter 2, we explain the related research and 
theoretical background. Chapter 3 explains the research 
method proposed in this paper. The experimental 
results are shown in Chapter 4, and conclusions and 
future works are given in Chapter 5.

Ⅱ. Background and related works

2.1 The definition of metadata

‘Meta’ in metadata means ‘higher’, and metadata 
means ‘data’ in which additional information is added 

after analyzing and classifying existing information. 
This definition of metadata is defined differently for 
each researcher as shown in Table 1[4]. Levy defined 
it as integrated management data for all forms of 
digitized information resources generated in a computer 
environment, and Dempsey&Heerly defined it as an 
intellectual element that can help users effectively use 
resources. Domestic researchers also have a similar 
definition to overseas researchers. In particular, the 
Korea Communications Commission defined metadata 
as attribute information and described it as data are 
given to content according to specific rules to 
efficiently find and use the information to be found 
among large amounts of information. In addition, 
broadcasting contents consist of additional information 
and essence, including all data (planning, organizing, 
production, operation, transmission, etc.) used in 
production and services related to additional 
information.

The meaning of metadata encompassing these 
definitions is briefly referred to as ‘Data about 
Data(herry)’, and metadata in a broadcast program can 
be said to be data with various additional information 
such as the title, genre, and cast information. Metadata 
mentioned in this paper uses the definition of 
Metadata in a broadcast program.

Table 1. Definition of metadata by researcher

Researcher Definition

Levy, 1994

Integrated management data
for all forms of digitized
information resources
generated in a computer
environment

Herry, 1996 Data about data

Dempsey & Heerly, 1997
Intelligent factors that can
help users use resources
effectively

Korea Communicat-ions
Commission, 2011

Including all data
(organizing, production, etc.)
used for production and
services related to additional
information on broadcasting
content



Journal of KIIT. Vol. 19, No. 11, pp. 143-153, Nov. 30, 2021. pISSN 1598-8619, eISSN 2093-7571 145

2.2 Existing metadata generation tools and

libraries

Programs can store meta-information on objects 
currently processed by receiving videos or images as 
input.

‘VATIC[5]’ is an online video annotation tool for 
computer vision research that crowdsources work to 
Amazon’s Mechanical Turk.

‘DarkLabel[6]’ is a utility program that can label 
object bounding boxes with ID and name in videos 
and images. It also can be used to crop videos, 
sample training images in a video, and mosaic image 
region. Anyone can use it for noncommercial purposes.

‘VoTT[7]’ is an open-source annotation and labeling 
tool for image and video assets. VoTT is a React + 
Redux Web application written in TypeScript.

‘ELAN[8]’ is an annotation tool for audio and 
video recordings. With ELAN a user can add an 
unlimited number of textual annotations to video 
recordings. An annotation can be a sentence, word or 
gloss, a comment, translation, or a description of any 
feature observed in the media. An annotation can be 
time-aligned to the media, or it can refer to other 
existing annotations. The content of annotations 
consists of Unicode text, and annotation documents are 
stored in an XML format.

2.3 Existing face recognition research

With the recent development of computer vision 
using deep learning, the Object Detection Algorithm 
Model is also developing. Table 2 is the result of 
comparing object detection models with the public 
SAR-Ship dataset[9][10].

As shown in Table 2, the existing YOLO-v3 was a 
model with a high Frame Per Seconds(FPS), while the 
mean Average Precision(mAP) was relatively low. 
However, YOLO-v5 performs well in both FPS and 
mAP.

Table 2. Comparison result for the SAR-Ship dataset

Algorithm FPS AP
Mask-RCNN 8.85 86.56
YOLO-v3 19.23 86.58
YOLO-v4-tiny 76.92 79.83
YOLO-v4 22.22 87.36

EfficientDet-d0 13.16 86.37
YOLO-v5 25.64 88.16

Therefore, we use YOLO-v5 for learning in this 
paper because the YOLO-v5 model with the best FPS 
and Average Precision(AP) among the object detection 
models is most suitable for real-time processing 
videos[11].

Ⅲ. System design and implementation

This service is a web browser that tags the name 
of the characters in the video and outputs the timeline 
of the characters. There are web services and app 
services in the service method that is easy for users 
to access, but since large-capacity video files must be 
processed, it was produced by selecting a web 
browser method rather than the app method.

3.1 The structure of the entire system structure

Fig. 1 shows the configuration of systems used in 
this service to create a meta-information management 
system through a web service. The system can be 
divided into a front-end that receives video from users 
on a web browser and outputs results and a back-end 
that processes videos and outputs results.

First, when the user inputs the video through the 
web browser, the video process part is executed in the 
back-end. In the video process part, the faces of the 
character are recognized and indexed in the input 
video. Then, based on the results, box the person’s 
face on the input video, print the name at the top so 
that it can be seen at a glance, and store the person’s 
appearance time log separately.



146 Development of a Web Browser-based Character in Video Metadata Generation Tool

Fig. 1. System architecture

In the data process part, the appearance time log 
and tag-processed video that occurred as output in the 
previous process are stored in the database, and the 
result is then output on the web. At this time, we use 
Nginx and Flask to output the result processed by the 
back-end.

3.2 The process of collecting and preprocessing

learning data

High-quality learning data are required to provide 
deep learning-based services. In this paper, learning 
data were generated using ‘Cvat’ and ‘Roboflow’. In 
order to generate data for training characters, a face 
of a character was detected by labeling the face of 
the person in the video.

We collected the data that extracted images in units 
of 20 frames from the video crawled the cast after 
looking up cast members on Google. Since the 
information is similar to the adjacent frames, the 
possibility of over-fitting of the learning result 
increases, so data were extracted every 20 frames.

Afterward, as shown in Fig. 2, a total of 4,737 
face data were generated by labeling the face in the 
image using the ‘Cvat’ site. The image data consists 
of 1,093 images for Daniel Radcliffe, 1,669 for Emma 
Watson, and 1,975 for Rupert Grint.

For image learning after labeling, feature points, 
which are labeled coordinate values, are extracted 
from the labeled image as a JSON file in the form of 
YOLO-v5 PyTorch. Of the total 4,737 pictures 
labeled, 70% of data was used for Train, 20% for 
Valid, and 10% for Test. As shown in Fig. 3, 
clustering was performed using the ‘Roboflow’ site. 
After labeling and clustering are completed, label.txt 
containing information of face location in the frame is 
shown in Fig. 4. 

3.3 Face recognition process based deep

learning

The final goal of this service is to output a video 
with the name Tag of each cast member attached to 
the original video and output the time the cast 
appeared. In order to provide such a service, it is 
necessary to detect a person’s face in the video and 
then go through a process of recognizing the faces of 
the cast among the detected faces.

Fig. 2. Example of labeling using ‘cvat’ site

Fig. 3. Labeling result example



Journal of KIIT. Vol. 19, No. 11, pp. 143-153, Nov. 30, 2021. pISSN 1598-8619, eISSN 2093-7571 147

Fig. 4. Process of generating face data
for characters

In order to recognize characters in the video using 
deep learning-based face recognition algorithms and 
store metadata based on the recognized results, the 
accuracy of the algorithm must be high. If the 
accuracy is low, there is little difference between the 
time to check the data extraction results and the time 
to collect data manually. Therefore, YOLO, whose 
performance was verified as a deep learning neural 
network for object detection, was used.

The YOLO-v5 model offers a total of four models: 
s(small), m(medium), l(large), and x(xlarge) as shown in 
Table 3. YOLO-v5-s has the lowest performance, but 
the processing speed is the fastest because the FPS is 
the highest. On the other hand, YOLO-v5-x has the 
highest performance and high accuracy but has the 
lowest FPS, which is slow. Reducing FPS slows 
detection, which has the disadvantage of lowering user 
service satisfaction[12].

We decided to proceed learning with YOLO-v5-x 
or YOLOv5-l model, emphasizing the performance of 
distinguishing people rather than speed since learning 
can be conducted using GPU and is not intended for 
real-time videos but registered videos.

In addition to model size, image size, batch size, 
and epoch size are also crucial for YOLO 
learning[13]. ‘Epoch’ refers to the number of times all 
datasets have learned about the entire neural network.

Table 3. Comparison of YOLOv5 pre-trained checkpoints

Model FPS Speed AP
YOLO-v5-s 455 2.2ms 36.7
YOLO-v5-m 345 2.9ms 44.5
YOLO-v5-l 264 3.8ms 48.2
YOLO-5-x 167 6.0ms 50.4

If the epoch is too small, the possibility of 
underfitting increases, and if the epoch is too large, 
the chance of overfitting is increased[14]. The number 
of batches to achieve 1 Epoch is ‘Iteration’, and the 
size of data entering a batch is ‘Batch’ size. Since the 
optimized size was different for each dataset, the test 
was conducted by changing the value.

The numbers were ‘Image size-batch size-Epoch 
size-model size’,

(1) 214-16-500-x,
(2) 214-32-300-x,
(3) 214-32-500-x,
(4) 314-16-300-x,
(5) 314-16-500-l,
(6) 416-16-300-x,
(7) 416-16-400-l
and the experiment was conducted with a total of 7 

cases. In Fig. 5, the algorithm’s performance was 
compared using the ‘mAP’ graph. ‘mAP’ is a value 
mainly used for performance evaluation of a 
Convolutional Neural Network(CNN) model, and 
performance can be evaluated by considering both the 
detection rate and accuracy of the algorithm. The 
higher the AP, the better the algorithm’s performance. 
Fig. 6 shows the 90% smoothing of graph figures 
using exponential smoothing to make it easier to 
compare performance.

As a result of comparing the graphs, the 
performance was good in the order of (5), (7), (6), 
(4), (1), (2), (3). Finally, the model was learned by 
‘314-16-500-l’(image size:314, batch size:16, Epoch 
size:500, and pre-weight model size:l).



148 Development of a Web Browser-based Character in Video Metadata Generation Tool

Fig. 5. Comparison of performance using mAP

Fig. 6. Comparison of performance
using mAP value smoothing 90%

Fig. 7. Example of the json file format
of the labeled dataset

The facial recognition neural network was learned 
with a COCO dataset labeled with classes of three 
characters in the previous process. Fig. 7 is an example 
of the JSON file format returned by ‘Rroboflow’. The 
label represents the class information corresponding to 
the image, id represents the id of the image, and the 
bounding box consists of x, y, width, and height.

After detecting the character’s faces using the 
YOLO model, the function of outputting the time 
characters appear was implemented. (1) is an equation 

for calculating the time when a character appears in 
the video. The equation for calculating the total 
playtime of the video is ‘full FRAME number/total 
video FPS’. At the moment of recognizing the face 
based on the equation, the FPS of the video was 
divided into the number of the frame number to 
obtain the time(seconds) within the video.

                          (1)

The frame at the moment of detecting the 
character’s face can be obtained to calculate the time 
(second). However, since the video has multiple 
frames consecutively, face tracking is implemented in 
a way that continues to appear when a person of the 
same class appears in a continuous frame by storing 
the frame number immediately before. After tracking, 
the time at the earliest point of time was saved as 
start and the last time as an end.

The start and end times were stored in a list in the 
character’s class, and when the video processing was 
completed, the list was handed over to Flask to print 
out the timeline in which the character appeared.

Fig. 8 is a diagram showing a face recognition 
algorithm. First, when the video inputs, the total FPS of 
the video is calculated, and the character’s face detection 
is started using the deep learning model learned with 
the previously collected data. The box is processed 
using a ‘draw frame’ on the input video when the 
character’s face is detected. Thereafter, the progress 
time of the frame is checked using ‘get_frame’ and 
stored together with the name of the detected person 
in the log. The detect process is repeated if the 
current number of frames is less than the total number 
of frames based on the total number of frames.

Tthe database as shown in Table 4 that stores the 
log information largely consists of ‘id’, ‘cid’ storing a 
character class as a number, ‘start’, the time when the 
character first appeared, and ‘end’, the last time the 
character appeared in the corresponding scene.



Journal of KIIT. Vol. 19, No. 11, pp. 143-153, Nov. 30, 2021. pISSN 1598-8619, eISSN 2093-7571 149

Table 4. Comparison of YOLOv5 pre-trained checkpoints

Field Type NULL Key
id varchar NO PRI
cid int NO
start varchar NO
end varchar NO

Fig. 8. Face recognition system

After checking all frames and analyzing the video, 
store the recorded log in MySQL database in the 
form of [‘id(auto increment)’, ‘class number’, ‘start 
time’, ‘end time’] and store the output video in 
Amazon S3 Bucket.

Ⅳ. Experiment

In order to measure the accuracy of the method 
proposed in this paper, we experimented with some 
scenes from a movie involving three actors whose 
faces were previously learned.

4.1 Environment of experiment

Table 5 and 6 are evaluation environments for 
measuring the performance of distinguishing casts in a 
video.

Table 5. Hardware system environment used for
performance evaluation

Type Specification
CPU Intel CORE i5 10 Gen

MEMORY DDR4 16GB
OS Windows 10

Table 6. Software system environment used for
performance evaluation

Type Version
YOLO v5
Python v3.7
OpenCV v4.5.3
learning

(training/valid/test)
data

4,737 images of 3 characters’ face
(Daniel Radcliffe, Emma Watson,

Rupert Grint)

test video
2min 30sec video (Youtube - Harry
Potter and the Deathly Hallows
Pt.1&2 | Official Trailer)

The test video data used for performance evaluation 
are a total of four videos within 60 seconds and a 
scene from a movie featuring all three actors, Daniel 
Radcliffe (cast: Harry), Emma Watson (cast: Hermione), 
and Rupert Grant (cast: Ron), was prepared.

4.2 Experiment

The meta-information management system for 
characters proposed in this paper uses facial data of 
previously registered characters to provide metadata on 
which characters in the input video appeared at what 
time through the website. First, access the website in 
a PC or mobile environment and upload the Input 
video as shown in Fig. 9.

Fig. 10 shows a page after uploading the video and 
pressing the ‘Tagging Cast’ grey button to execute the 
image process. When the process is completed, the 
tagged video on the left is the output video with the 
name tagging on the cast’s face on the input video. 
In addition, in the timeline on the right, the start time 
and end time in which each cast appeared are output. 
When a timeline marked in the form of ‘hh:mm:ss’ is 
clicked, the output video moves to the corresponding 
time.



150 Development of a Web Browser-based Character in Video Metadata Generation Tool

Fig. 9. Complete upload video file

Fig. 10. Complete face detection and print timeline

4.3 Performance evaluation

For the performance evaluation of the system, the 
average value of recognition accuracy that 
distinguished three characters was compared. Table 7 
is a table comparing the average accuracy of 
characters for each scene. The average accuracy was 
calculated by adding all the accuracy values of the 
recognized faces between the start-time and end-time 
and then dividing the number of frames of the 
character. Additionally, if the face recognition accuracy 
is lower than 50%, it is considered that the face 
recognition is not properly recognized, and the frame 
is not output.

Table 7. Comparison of the average face recognition
accuracy of each scene

Field Harry Hermione Ron
Forward face-1 (Fig 11) 0.88 N/A N/A
Forward face-2 (Fig 12) N/A 0.89 N/A
Forward face-3 (Fig 13) 0.79 <0.5 0.83
Not forward face (Fig 14) 0.85 N/A N/A
Close up face (Fig 15) 0.75 N/A N/A
Far away face (Fig 16) 0.76 N/A N/A
Shadowed face (Fig 17) <0.5 <0.5 <0.5
Focus out face (Fig 18) <0.5 0.87 <0.5

Over 90° aspect of face-1 (Fig 19) <0.5 N/A N/A
Over 90° aspect of face-2 (Fig 20) 0.59 N/A N/A

Obscured face (Fig 21) <0.5 N/A N/A

Fig. 11, 12, 13 is a scene in which a character 
looks forward. It can be seen that the accuracy is 
88%, 89%, and 83%, in the order of characters Harry, 
Hermione, and Ron.

On the other hand, in Fig. 14, where the face is 
detected sideways because the person does not look 
forward, the accuracy of Harry is 85%, which is 3% 
lower than the accuracy of the front face. Most of the 
trained datasets were frontal images of the face, but 
the accuracy of the side of the face rotated below 45 
degree is not significantly different. This is because 
when the face is rotated below 45 degrees, there is 
no significant difference from the position of the 
feature point of the front face.

As can be seen by comparing the accuracy of Fig. 
15 and 16, the distance of the face does not 
significantly affect the accuracy. 

Fig. 11. Forward face – 1

Fig. 12. Forward face – 2

Fig. 13. Forward face – 3



Journal of KIIT. Vol. 19, No. 11, pp. 143-153, Nov. 30, 2021. pISSN 1598-8619, eISSN 2093-7571 151

Fig. 14. Not forward face

Fig. 15. Close up face

Fig. 16. Far away face

The face recognition accuracy of the characters in 
Fig. 17 is less than 50%, and as shown in Fig. 17, it 
can be seen that the accuracy is significantly reduced 
if the face is small and there is a shadow. This result 
suggests that shadows are a factor that has a more 
significant impact on accuracy than face size because 
shadows make it more challenging to distinguish facial 
features.

Fig. 18 is a scene where the focus is off the Ron’s 
face, and the accuracy of Ron is less than 50%. The 
accuracy of the scene is at least 33% lower than the 
accuracy of 83% of the Ron’s forward face. When 
out of focus, a phenomenon similar to the blur effect 
occurs. Face recognition is performed by extracting 
features based on a combination of fine texture 
information on the face.

Fig. 17. Shadowed face

Fig. 18. Out of focus face

Fig. 19. Face rotated more than 90 degrees - 1

 However, the feature points disappear, when the 
blur effect occurs, and the facial recognition 
performance decreases. In addition, face of Harry was 
not out of focus, but moved too fast, so the accuracy 
of face recognition was low.

Fig. 19 is a scene in which the face rotates more 
than 90°, so only less than half of the face appears. 
Fig. 20 is a scene in which about half of the face is 
shown by looking forward a little more. In Fig. 19, 
face recognition was measured to be less than 50% as 
only a part of the side of the face appeared. The 
reason is that only half of the features held by the 
front face remain when the side is more than 90 
degrees, since most of the learning data sets are front 
face images. However, if it exceeds half of the face, 
as shown in Fig. 20, it can be seen that the accuracy 
increases to 59%. 



152 Development of a Web Browser-based Character in Video Metadata Generation Tool

Fig. 20. Face rotated more than 90 degrees - 2

Fig. 21. Face obscured by an obstacle

Fig. 21 is a scene in which a part of the face is 
covered by a hand obstacle surrounding the face. The 
face recognition accuracy is less than 50%. The 
accuracy is at least 9% lower than the side face 
accuracy of 59% in Fig. 20. This occurs because 
obstacles cover the face and eliminate the facial 
feature values.

Ⅴ. Conclusion

In this paper, we propose how to automatically 
generate metadata of the cast’s index and appearance 
time by recognizing faces between casts based on 
deep learning. 

The entire service was implemented as a website to 
increase accessibility.

The proposed method uses YOLO-v5 to recognize 
the pre-trained faces of the casts, check whether the 
casts appeared in the video and if so, save when they 
appeared in the video. The accuracy of indexing the 
faces of characters by detecting and classifying the 
character's face using a Deep learning system was up 
to 89%.

Experiments using video data when the same cast 
appeared in different scenes showed that small changes 

in face size or small rotation angle(Fig. 14, 21) did 
not significantly affect accuracy. But shadows(Fig. 17), 
blurring(Fig. 18), obstacles in front of the face(Fig. 21), 
and large face rotation angles(Fig. 19) significantly 
affected the accuracy of the person recognition.

Face recognition models capable of strongly 
performing even in various situations may be 
combined and used to minimize this effect. There are 
various models, such as a model resistant to lighting 
changes using histogram qualification, a deblurring 
algorithm that removes blur, an algorithm that can 
improve resolution, and a model resistant to changes 
in face angle that use 3D image data[15].

In future research, based on the above algorithm, it 
plans to modify it to be robust to the characteristics 
of the video and to add a system configuration that 
can store meta-information such as the plot in the 
video, the facial expressions of the cast, and lines.

References

[1] Adrianne Lee and Hee-Jung Kim, "A study of 
metadata element design for broadcasting records 
management-based on the case study of MBC TV 
program records", Journal of the Korean Library 
and Information Science, Vol. 43, No. 3, pp. 269–
295, Sep. 2009. http://dx.doi.org/10.4275/KSLIS. 
2009.43.3.269.

[2] Jinseung Kim, Yongkoo Han and Youngkoo Lee, 
"Efficient storage and retrieval for automatic 
indexing of persons in videos", Journal of Korea 
Multimedia Society, Vol. 14, No. 8 pp. 1050-1060, 
Aug. 2011. http://dx.doi.org/10.9717/kmms.2011.14. 
8.1050.

[3] Minji Kang, Jaekeun Cho, Giseok Choe, and 
Jongho Nang, "A semi-automatic authoring tool on 
HTML5 web browser for generating broadcasting 
content metadata", The Korean Institute of 
Information Scientists and Engineers, Vol. 46, No. 
1, pp. 1507-1509, Jun. 2019.



Journal of KIIT. Vol. 19, No. 11, pp. 143-153, Nov. 30, 2021. pISSN 1598-8619, eISSN 2093-7571 153

[4] Sungho Kwak, "A study on a standardization 
model of Korean broadcasting metadata system", 
Department of Communication The Graduate School 
of Sogang University, Aug. 2012.

[5] VATIC https://github.com/cvondrick/vatic [accessed: 
Sep. 15, 2016]

[6] DarkLabel https://github.com/darkpgmr/DarkLabel 
[accessed: Sep. 15, 2021]

[7] VoTT https://github.com/Microsoft/VoTT [accessed: 
Sep. 15, 2021]

[8] ELAN https://archive.mpi.nl/tla/elan [accessed: Sep. 
16, 2021]

[9] Y. Wang, C. Wang, H. Zhang, Y. Dong, and S. 
Wei, "A SAR dataset of ship detection for deep 
learning under complex backgrounds", Remote 
Sensing, Vol. 11, No. 7, pp. 765, Mar. 2019. http:// 
dx.doi.org/10.3390/rs11070765.

[10] G. Zhang, Z. Li, X. Li, C. Yin, and Z. Shi, "A 
novel salient feature fusion method for ship detection 
in synthetic aperture radar images", IEEE, Vol. 8, 
pp. 215904-215914, Nov. 2020. https://doi.org/ 
10.1109/ACCESS.2020.3041372.

[11] G. Yang et al., "Face mask recognition system 
with YOLOV5 based on image recognition", 2020 
IEEE 6th International Conference on Computer 
and Communications (ICCC), Chengdu, China, pp. 
1398-1404, Dec. 2020. https://doi.org/10.1109/ 
ICCC51575.2020.9345042.

[12] YOLOv5 https://github.com/ultralytics/yolov5 [accessed: 
Aug. 31, 2021]

[13] Thuan Do, "Evolution of YOLO algorithm and 
YOLOV5: the state-of-the-art object detection 
algorithm", 2021.

[14] D. Garg, P. Goel, S. Pandya, A. Ganatra, and K. 
Kotecha, "A deep learning approach for face 
detection using YOLO", 2018 IEEE Punecon, Pune, 
India, pp. 1-4, Dec. 2018. https://doi.org/10.1109/ 
PUNECON.2018.8745376.

[15] Hyeong-Ill Ki, Seung-Ho Lee, and Yong-Man Ro, 
"Trends of facial recognition technology in the 

wild environment", The Journal of The Korean 
Institute of Communication Sciences, Vol. 31, No. 
4, pp. 88-98, Mar. 2014.

Authors

Minjeong Kim

Feb, 2019 ~ present : BS degree
in Department of Computer

Science & Engineering, Dongguk
University

Research interests : computer
vision, IoT, computer network

Younsoon Shin

1999 : B.S. in Computer Science
and Statistics

2011 : Ph.D. in Information
Communication Engineering at

Dongguk University
2012 ~ present : Professor at

Dongguk University
Research interests : wireless sensor networks, embedded

system, and IoT


	Development of a Web Browser-based Character in Video Metadata Generation Tool
	Abstract
	요약
	Ⅰ. Introduction
	Ⅱ. Background and related works
	Ⅲ. System design and implementation
	Ⅳ. Experiment
	Ⅴ. Conclusion
	References


