
Journal of KIIT. Vol. 17, No. 9, pp. 133-144, Sep. 30, 2019. pISSN 1598-8619, eISSN 2093-7571 133

Ⅰ. Introduction

C/C++ is a widely used programming language for
operating systems, critical software, and system software

(e.g., e-mail and domain name system servers on the
Internet). C/C++ developers often use memory
allocated arrays, which are allocated and deallocated
automatically without developer intervention. Because

* Dep. of smart software, Korea Polytechnic
 - ORCID: https://orcid.org/0000-0002-1963-1852

ž Received: Aug. 23, 2019, Revised: Sep. 00, 2019, Accepted: Sep. 00, 2019
ž Corresponding Author: Young-Su Jang
 Department of SmartSoftware, Korea Polytechnics, 41-12, Songwon-gil,
 Gongdo-eup, Anseong-si, Gyeonggi-do, 17550, Korea
 Tel.: +82-31-650-7257, Email: jyskkh@naver.com

Source Code Instrumentation Technique for Buffer Overflow
Vulnerability Detection

Young-Su Jang*

Abstract

The requirements of application software are becoming increasingly complex, and the importance of information
security is increasingly emphasized at the national, organizational and individual levels. In this paper, we designed
and implemented the Semantic Function Libraries (SFL) white box vulnerability detection library. The SFL
dynamically locates sensitive Application Programming Interface (API) function calls in C/C++ to detect code
vulnerabilities at program execution and check source code variable safety conditions. Our research approach is that
instrumentation checks are performed before working with sensitive API functions to infer various buffer sizes used
in C/C++ source code and to store information. In addition, the analysis of the check is based on semantic dynamic
analysis based on API functions. Our proposed technique is useful for previewing software monitoring and for
predicting and tracking the location of bugs that occur during program operation.

요 약

어플리케이션 소프트웨어의 요구 사항은 갈수로 복잡해지고 있으며, 정보 보안의 중요성 또한 국가, 조직

및 개인 수준에서 점차 강조되고 있다. 본 논문에서는 Semantic Function Libraries (SFL) 화이트 박스 취약성

발견 라이브러리를 설계 하고 구현하였다. SFL은 C/C++에서 민감한 Application Programming Interface
(API) 함수 호출을 동적으로 찾아 프로그램 런타임 시에 코드 취약성을 탐지하고 소스코드 변수 안전성 조건

검사를 수행한다. 우리의 연구 접근 방법은 C/C++ 소스코드에서 사용되는 서로 다른 버퍼 크기를 추측하고

정보를 저장하여, 민감한 API 함수 작업을 수행하기 전에 인스트루먼트 검사를 먼저 수행한다. 또한 검사에

대한 분석은 API 함수 기반의 의미론적 동적 분석에 기반을 두었다. 우리가 제안하는 기술은 미리보기 소프트

웨어 모니터링과 프로그램 작동 과정에서 발생하는 버그의 위치를 예측하고 추적하는 데 유용하다.

Keywords
buffer overflow, information security, sensitive operation, look-ahead software monitoring, software quality evaluation

http://dx.doi.org/10.14801/jkiit.2019.17.9.133

https://crossmark.crossref.org/dialog/?doi=10.14801/jkiit.2019.17.9.133&domain=http://ki-it.com/&uri_scheme=http:&cm_version=v1.5

134 Source Code Instrumentation Technique for Buffer Overflow Vulnerability Detection

of their convenience, memory allocated arrays are used
to store data from external inputs in the Application
Programming Interface (API) function (hereinafter
called “function”) calls. However, memory corruption
vulnerabilities (e.g., stack allocated overflow) are found
most commonly in C/C++ applications[1]. Although
memory corruption vulnerabilities have received
substantial attention, most solutions have failed to
address the problem fully[2]. Furthermore, attackers are
constantly searching for new exploits[3][4]. Most
solutions presume that if secure coding rules or
built-in verification functions are used for a program
code, then the result of that program is safe[4]-[6].
However, if certain malicious values are supplied to
the sanitization function, this does not completely
protect against all attacks[3][7]. In general, it is
well-known that both static analysis and dynamic
analysis must be used to verify software weaknesses
and for test generation. Each technique provides
different solutions in terms of reliability, speed, and
precision. Static analysis provides all potential
execution paths but requires some heuristic for
selecting only the relevant paths[8]-[10]. Therefore, it
can cause false negatives. Dynamic analysis incurs
high computing overhead and cannot guarantee that all
possible execution paths are exercised[11][12].
Therefore, it has limited defect detection coverage.

In this paper, we propose a look-ahead dynamic
technique that gives first priority to program protection
from inappropriate input values so that errors are
exposed as they occur in the course of executing a
C/C++ application. This is based on the semantic
checking of whether a statement follows according to
the developers’ intentions. The crux of the technique
is (1) to facilitate the modification of code that causes
detected errors, (2) to prevent other codes and the
entire system from being damaged despite the errors
occurring in some codes, and (3) to complement the
security weakness that occurs during program
development or application design.

Therefore, our technique first analyzes sensitive

function facets to offer a vulnerability analysis strategy
for an application. Next, the technique generates a
function verification operation to sanitize it. API
statements that have false assertions are classified as
illegal and are not allowed for execution within the
application. To evaluate the proposed technique, we
implemented the Semantic Function Libraries (SFLs)
tool and tested it on a set of empirical test suites.

The main contributions of this paper are as follows:

l We describe a predictable programming technique
that models semantic function verification operations
for analysis.

l We introduce a new technique that estimates
semantic functions by verifying input values.

The remainder of this paper is organized as
follows: Section 2 reviews previous studies, and
Section 3 details our research overview with a sample
program, and Section 4 presents our experimental
settings. Section 5 discusses our experimental findings
and, finally, Section 6 presents our conclusions.

Ⅱ. Related works

2.1 Static-analysis technique

Panichella et al.[13] used the open-source checkers
ITS4, Flawfinder, and RATS to analyze telecom-
graded software. They found that a static code
analyzer could find security vulnerabilities but
produced many false negatives. In their analysis, the
results were not compared with trouble reports or
maintenance costs using industry data. We used a
similar approach to add verification operations in the
source code, but our technique is automated and does
not require developer interventions such as annotations
to verify an application. In addition, we do not limit
our analysis to the detection of vulnerability-inducible
methods. Kellogg et al.[14] proposed a lightweight
bound-checking (LBC) approach. This technique uses

Journal of KIIT. Vol. 17, No. 9, pp. 133-144, Sep. 30, 2019. pISSN 1598-8619, eISSN 2093-7571 135

source-to-source transformation to eliminate redundant
checks. The LBC uses guard zones to separate all
objects (e.g., the stack, heap, and static areas) in
memory. No correct program memory can access the
guard zones. However, the LBC does not handle
use-after-free bugs (i.e., bugs that reference memory
after it has been freed). Maletic and Collard[15]
proposed srcML, which conducts static checks for
custom software analysis. It consists of a
representation element and toolkit for converting
source code between formats. This technique marks
the inherent syntax by wrapping the source code text
in XML elements. The names of the elements reflect
the syntax using tags such as {if}, {while}, and
{class}. We use a similar approach to generate
intermediate forms for our source codes.

2.2 Dynamic-analysis technique

Su et al.[16] used Fuzzy testing to challenge the
reliability of a program. This testing technique
detected potential vulnerabilities in binaries using test
inputs to explore program control paths (the sequence
of statements executed by a program) and trigger
vulnerabilities. However, this technique cannot generate
all possible test inputs that cover all program control
paths. Therefore, vulnerabilities might be by-passed.
The effectiveness of the dynamic analysis technique is
based on the quality of test inputs. Without such test
inputs, dynamic analysis becomes less effective in
exploring application vulnerabilities. Unlike these
dynamic approaches, our SFL employs a look-ahead
monitoring mechanism and generates verification
operations using our transformer. Thus, we guarantee
that verification operations cover all control paths in a
source code. Al-Shaer et al.[17] proposed LLVM, a
dataflow sanitizer tool for measuring dynamic
taint-tracking and secret redaction support in annotated
C/C++ programs at compile-time. This technique tracks
the feasibility of dynamic taint-tracking for C/C++
code that stores information in graph data structures.

Ⅲ. Research overview

Fig. 1 shows a sample user-logon verification C
program. This sample program consists of one
Boolean variable (PasswdStus) and three string
variables (Passwd, Valid_Passwd, and Org_Passwd).
At line 4 in the main(), the IsPassword() is called to
determine whether a user is a registered user. At line 4
in the IsPassword(), gets() function reads the logon
password from the user. At line 7, the supplied
password is compared with the authorized user
password.

In Fig. 1, gets(Passwd) function in the IsPassword()
is able to store a maximum of 15 bytes consisting of
characters of the byte string identified by the Passwd
variable (note that we ignore the string null terminator
character). If 20-byte character strings are entered into
the Passwd variable, then the Passwd variable is
exploited by entering a string whose size is larger
than the buffer assigned to hold it. Consequently,
gets(Passwd) function may be exploited as an error or
an invasion window.

Consider the following program fragment from
Fig. 1.

Fig. 1. Simple C program

136 Source Code Instrumentation Technique for Buffer Overflow Vulnerability Detection

Example 1: Given the input (Valid_Passwd=NULL,
Org_Passwd=”EnterMyPasswordOkay”), the program
generates a statement:
 strcpy(Valid_Passwd, Org_Passwd);
The input is transformed into expressions:
 strcpy(Valid_Passwd, "EnterMyPasswordOkay");

strcpy() function copies a maximum of 19 bytes
consisting of the characters of the byte string
identified by Org_Passwd into a character array
identified by Valid_Passwd. Valid_Passwd is allocated
15 bytes by the input values. Therefore, Valid_Passwd
is exploited.

Example 2: Continuing from Example 1, let the
function for the statement be defined as follows:

 SIZE_buf = 15;
 strncpy(Valid_Passwd, Org_Passwd, SIZE_buf+5);

Org_Passwd is allocated 19 bytes by the input values
("EnterMyPasswordOkay"). Valid_Passwd is allocated
15 bytes by NULL. In this case, even though
strncpy() function is used instead of strcpy() function
to satisfy C secure coding rules[6], Valid_Passwd is
exploited. Therefore, the declaration length of the
variable is not an absolute evaluation element that
evaluates vulnerability. Even if a semantic
characteristic exists dynamically in a function, such as
in Example 2, this is not detected by analyzing the
static code or syntax structure[2]. Notice that string
variables are compared only in terms of the structural
parts of their declaration lengths. This limitation exists
because static-code or syntax-aware analysis cannot
detect the semantic characteristics of a function.

On the other hand, if awareness of the semantic
characteristics of a function is possible, then the
original code need not be modified and developed
using conventional programming practices. Retrofitting
an application requires manual effort proportional to
the complexity of the application. Moreover, it is not
necessary to hinder debugging or maintenance. To

perform a semantic operation, we need to know the
set of values held by functions and variables. We
define a verification operation and the corresponding
variable validation.

Definition 1 (Semantic verification operation associated
with a control path). Let the set of function operations
be denoted by M. For any function operation m,
program P can take a semantic verification operation
associated with the control path. Let M0 denote the
set of benign and safe semantic verification operations
corresponding to function operation M[3]. Let us
assume that m and m0 are extracted on the same
control path and that there is an associated valid
function representation function Stmt_PA: M -> M0,
{(m, Stmt_PA(m)) | m ∈ DOMAIN(Stmt_PA)}, and
Stmt_PA (m) = m0. Let the set of variables (or
parameters) be denoted by V, and for any input
variable v, let us assume that m and m0 take on the
same input variable (i.e., m ≈ m0).

Therefore, given a function m(v), if we know
another valuation m0(v), then we can evaluate its
verification operation and deduce the control path.
Assertions have been used for performance verification
with respect to partial correctness to ensure that a
program does not produce unexpected results for valid
operations, which are "expected"[18].

Definition 2 (Evaluation of verification assertions on a
variable). For m0 and the corresponding input variable
v, we define assertions on variable V. A condition on
a variable is any Boolean assertion function F: V →
{TRUE, FALSE}, {(v, F(v)) | v ∈ DOMAIN(F)}, and
F(v): assert (v.maxlen >= v.len) = TRUE.

Derivation conditions of assertions are Boolean
functions that are acceptable for any derivation. The
role of any assertion is to indicate whether the
assertion is applicable to a derivation[18]. In our
approach, we can model each operation in terms of its

Journal of KIIT. Vol. 17, No. 9, pp. 133-144, Sep. 30, 2019. pISSN 1598-8619, eISSN 2093-7571 137

effect on two buffer attributes: maxlen, the number of
bytes declared for the buffer, and len, the number of
bytes currently in use[19]. For example, after a set of
string values are inputted into variables, our approach
automatically calculates the length of the selected
character string. This is easily implemented using the
sizeof() function, which is defined in C functions and
operations. Therefore, we can trace the buffer related
variable size and status by analyzing a function’s
corresponding assertions. Consider the following
verification assertion of strncy() function in Example 2.
The assertion is checked as follows:

Valid_Passwd.maxlen ⊇ min(Org_Passwd.len, SIZE_buf+5)
Valid_Passwd.maxlen >= min(Org_Passwd.len, SIZE_buf+5)

Assertion checking is used to determine whether
each assertion is false or checked in a program. An
assertion means that Valid_Passwd.len should be
replaced by min(Org_Passwd.len, SIZE_buf+5) and if
Valid_Passwd.maxlen < min (Org_Passwd.len, SIZE_
buf+5) is TRUE, then this is a fault. Therefore, given
input variables in a program, a potential exploitation
can be considered safe if all function assertions are
TRUE[20].

Ⅳ. Implementation

4.1 The tool: SFL

Our tool consists of three components: (1)
preprocessing, (2) source code transformation, and (3)
source code sanitization. Preprocessing is implemented
using a source code facet analysis technique. The
source code transformation is implemented using a
C/C++ source transformation tool. Finally, the source
code sanitization is implemented using our Pattern
Analysis (PA) library.

4.1.1 Preprocessing: Source code function facet
analysis

We preprocess the source programs text
segmentation and stop words list. In order to extract
complete command keywords, we remove comments
and external libraries. For vulnerability command
extraction, we utilize suffix array based technique to
extract vulnerability commands, and then select the
keywords from them with rules. Specifically, we use
the phrase discovery algorithm [21], which employs a
variant of suffix arrays extended with an auxiliary
data structure. Then, we remove the single words that
are comments and the phrases which begin or end
with stop words. We inquire into the words that are
single words and the phrases. Finally, the filtered
words and phrases that exceed the com-mand keyword
frequency threshold T are chosen as command
keywords. Additionally, removing the safe commands
can reduce the calculating complexity of the method.
These results are used to configure the indexed
fingerprint database (see Section 4.1.2).

Since programs are composed of a set of functions,
if a vulnerable function exists, the application may be
vulnerable. Sensitive function analysis of source code
is significant because vulnerability-inducible functions
cause potential faults or bugs in a program. Therefore,
function facet analysis of source code can offer a
vulnerability analysis strategy for an application. We
define function keyword to measure function facets.
Fig. 2 shows an example of a function text
enumerator based on the coverage of function keyword
in C/C++.

Enum Method Types
None = 0;
gets = 1;
strcpy = 2;
strcat = 3;
...
fgets = 23;
strncpy = 24;
strncat = 25;

End enum

Fig. 2. Example of function type statements

138 Source Code Instrumentation Technique for Buffer Overflow Vulnerability Detection

Table 1. Summary of notations

Notations Description
FF(kw) The function facet of keyword(kw)

FK(kwj,si)
The frequency of keyword(kw) in
source code(s)

t(kwj,si)
The number of times that keyword(kw)
appears in source code(s)

We assume that we can extract a set KW of q
keyword from source codes S. Therefore, we define
the function facet (FF) set as fllows:

 ∪

 (1)

where i ∈ [1,n], j ∈ [1,q], and FK(kwj,si) represents
the frequency of functions of keyword kwj appearing
in the source program si:

 (2)

where t(kwj,si) represents the number of times that
keyword kwj appears in source code si. During the
facet analysis process, the function keyword is
classified as a weakness as follows, where the
vulnerability-inducible function keyword set KWc
contains the keyword covered by the vulnerability-
inducible function:

 (3)

The preprocessing working scheme is described
briefly in Fig. 3. At the beginning of preprocessing,
no source code is selected (SP = 0). λ (λ ∈ [0,1]) is
used to give a tradeoff score between a vulnerable
function and a safe function. At line 2, the procedure
reads the first source code s*[22], and then the set
KWs* of keywords that s* selects is compared with the
vulnerability-inducible function keyword set KWc. Next,
the facet relevance score of the vulnerability- inducible
function is calculated.

Fig. 3. Preprocessing working scheme

Specifically, since source codes have many different
facets of vulnerability-inducible functions, we suppose
that a set of keyword exists whose different subsets
represent the various underlying facets well. We can
then cover all the facets by selecting a source code
subset to cover the keyword. The procedure is
repeated until all function keyword are analyzed.
Vulnerability scores indicate the riskiness of the
vulnerable function. Vulnerability scores range over 0–1,
with 0 representing no vulnerability and 1 representing
high vulnerability.

4.1.2 Tree-based source code transformation

A source code transformation using Abstract Syntax
Tree (AST) is the logical approach for analyzing an
application written in C/C++[23]. We implemented
index fingerprint representations using a robust parser
[24] capable of extracting syntax trees from source
code even without a working build environment. In
particular, this parser does not validate the syntax of
the source code. Instead, the aim is to extract as
much information from the source code as possible.
The AST subtrees correspond to an executable
statement or control-flow structure in the source code.
Each subtree can be represented as a fingerprint set
with fingerprint indexation in a customized database

Journal of KIIT. Vol. 17, No. 9, pp. 133-144, Sep. 30, 2019. pISSN 1598-8619, eISSN 2093-7571 139

for further reference (e.g., match back-tracking). The
fingerprint database is indexed. Fingerprints are sorted
by decreasing weight, hash value, and parent-linked
nodes. This structure can be used to iterate over the
database to retrieve function calls and obtain all the
fingerprints of the child subtrees of a given node.
That is, the group of each subtree corresponding to an
instruction statement of exact subtree matches can be
retrieved by iteration over the indexed fingerprint
database.

To perform source code transformation, we used the
TXL source-code transformation algorithm[25]. The
TXL algorithm consists of two phases. The first is the
use of a grammar file to produce a scanner and a
parser for the grammar. In this phase, our AST is
constructed from a robust parser and is used as the
input. The second phase applies the transformation
rule to the subtree. This specifies any sequence of
external definitions such as function definitions or
global declarations (e.g., memset, global_fun). In our
approach, we preprocessed the source code analysis to
extract function facets using a function detection
enumerator. If we only consider a particular function
facet, our experiment is half-learned and checks the
shallow functionality of the program. Therefore, we
can establish a source code transformation strategy to
analyze a particular function facet.

We add a function verification operation to
instrument a set of variables. For example, if x and y
are two input variables in strcpy() function, the
operation:
 strcpy (x, y);
results in a verification operation. The transformer
adds a verification operation prior to this operation as
follows:
 Stmt_PA (strcpy, x, y, sep);
 (String=Stmt_PA(function_pattern, var1,…, varn, [separator];)

Notice that this function has the original input
variables and can therefore perform real computation
along the actual control path taken by the program.

The conditional expression in the original source code
is snot modified by our transformer. Fig. 4 shows the
partial transformed code for the program in Fig. 1.

Fig. 4. Practice example program

4.1.3 Semantic-code based sanitization

Sanitization is a specific process type of input
validation performed before external inputs are used.
To guarantee quality assurance of the variable and
verify the function operation, we implemented a PA
library that represented the verification pattern
information of the function in the program control
path. PA is based on function assertions, which are
verification conditions wherein a predicate should
always be true at that point in the code. At runtime,
if an assertion evaluates as false, it causes an
assertion failure. The program then crashes or
produces an assertion exception.

Fig. 5 shows a heuristic function assertion example
in the PA library for Stmt_PA(strncpy, dst, src, n). A
verification operation is performed to check function
assertion according to the pattern information in PA.

Fig. 5. An example of a string verification operation

140 Source Code Instrumentation Technique for Buffer Overflow Vulnerability Detection

PAs are connected by the Stmt_PA(). Stmt_PA()
calls a PA that verifies the function variable for
vulnerability detection. This operation produces an
exception if the PA returns false. Otherwise, the
statement may cause vulnerability at runtime. Before a
statement is executed, PA pre-examines the variable for
vulnerability. This idea of verifying variables in the
program control path differs from the traditional
dynamic tainting analysis, in which inspection is done
after execution. Thus, we can monitor function
variables before the statement is executed in an actual
control path. PA has two major steps: step 1 analyzes
the grammatical patterns of the statements and then
computes and stores all variable attributes (i.e., maxlen
and len). Step 2 computes variable assertions to
classify vulnerability.

Fig. 6. A brief outline of PA-based estimation

Fig. 6 shows the scheme in brief for verification
operations. PA calls the Verify_Substitute_Stmt()
procedure, which verifies the input variables in
accordance with the verification pattern information.
This procedure produces an exception if there is no
assurance in the results. The AnalyzePattern() analyzes
functions and calculates function variable attributes.
Function variable assertions, calculated by the
ComputePatSet(), are stored in PSstmt[], and each
PSstmt is compared using the ComparePatternValues().

Ⅴ. Evaluation

5.1 Empirical test-suite evaluation

We evaluated the detection accuracy using the Juliet
test set[26] to assess the effectiveness of the SFL.
This test set is a collection of C/C++ programs with
known flaws consisting of 23,957 test cases documented
by Common Weakness Enumeration (CWE)[27]. It has
been used to understand other software assurance
tools’ capabilities[28]. In addition, it covers the top 25
security errors defined by SANS/MITRE (The MITRE
Corporation, 2017, http://cwe.mitre.org/). The CWE
entries were composed of one or more abstract
categories. For example, the “Buffer overflow” category
is represented by different CWE entries (e.g., CWE-
131: incorrect calculation of buffer size; CWE-191:
integer overflow).

Therefore, we modeled CWE entries according to
the “Center for Assured Software 2016” to generate a
general software security valuation model[29]. This
security model helps to analyze and interpret the Juliet
test set results. For accurate analysis, we classified
every case into two cases. We also removed some
conditional preprocessor (#ifndef) commands. The test
set was classified into two types of test cases: flawed
or “bad” code and “good” code, which contains
legitimate inputs. The “bad” code is used to check
whether the proposed SFL successfully detects flaws
and reports false negatives. On the other hand, the
“good” code is used to verify whether any false
positives are reported. If the SFL modifies input, we
obtain a false positive.

We performed an experiment to determine whether
false positives or false negatives were caused by a
loss of precision. We ran the test set to ensure that
the SFL successfully detected and prevented flaws.
The flaws suite includes more than 10 different kinds
of flaws such as buffer overflow flaws and code
quality flaws. The results of running the test cases are
summarized in Table 2.

Journal of KIIT. Vol. 17, No. 9, pp. 133-144, Sep. 30, 2019. pISSN 1598-8619, eISSN 2093-7571 141

Table 2. Juliet test set evaluation results.

Weakness type Test CWEs SLOC
Input Attempts Cases/

Flaws
False

Negatives (%) ArbitrationGood Code Bad Code

Memory
corruption

CWE-120 2,210 8 61 84/84 10.7 9
CWE-126 2,852 6 55 106/106 0 0
CWE-131 2,032 4 42 51/51 1.9 1
CWE-190 3,116 3 67 86/86 0 0
CWE-191 2,191 2 33 38/38 18.4 7

The first section lists the weakness type of the
security model. “Memory corruption” has the most
CWE entries (buffer handling) because this is the
most frequent type of security vulnerability in C/C++
programs. The third section lists the size of the
Source Line of Code (SLOC). The fourth section lists
the number of test cases of the two types. The fifth
section shows the number of cases in the test sets and
the number of flaws detected by the SFL. The sixth
section shows the rate of false negatives, as there is a
situation in which the proposed SFL fails. The final
section shows the number of developer interventions
(e.g., parse errors).

5.2 Performance accuracy

Our proposed technique was compared with three
existing well-known detection approaches: Flawfinder
(static analysis; Ver. 1.31), Cppcheck (static analysis;
Ver. 1.76), and Visual Studio Compiler (static and
dynamic analysis; Ver. 2015). The accuracy of
vulnerability detection indicates the number of exactly
detected flaws. We compared the detection accuracy
and the time complexity imposed by the approaches.
The applications were installed on the local host to
prevent network overhead. We performed test suite
runs and measured the detection accuracy of each run
with caching disabled. For reasons of accuracy, we
performed our experiments three times and report the
average run time. The Flawfinder tool detects only
fixed-size buffer overflow flaws, such as exceeding the
buffer size. The Cppcheck tool can detect buffer
overflow and format string flaws. Visual Studio

Compiler found by far the most flaws.
However, most of them were non-security issues.

Furthermore, it took the longest time to analyze our
test set. On the other hand, our SFL tool is effective
in detecting and preventing flaws. In addition, the SFL
tool yields 18–23% better accuracy than the Flawfinder
and Cppcheck tools.

In addition to detection time, time complexity is an
important factors for evaluating a detection system.
Table 3 compares the algorithms with respect to
deployment requirements. The term 'High' has twice
the time complexity of the term 'Medium'. The term
'Very high' has twice the time complexity of the term
'High'.

Table 3. Comparison of performance between algorithms

Algorithm Detection Prevention Time
complexity

Flawfinder Yes No Low
Cppcheck Yes No Low
Visual studio compiler Yes No Very high
SFL Yes Yes Very high

Ⅵ. Conclusion and future work

In this paper, we have proposed a technique that
detects and prevents vulnerabilities in an application.
In applications, most vulnerabilities stem from
numerous unexpected input values. However, retrofitting
an application requires significant resources. It is
therefore necessary to predict and trace the locations
of bugs throughout the course of a program's
operation. It is essential to detect errors and to
minimize damage when uncontrollable or unexpected

142 Source Code Instrumentation Technique for Buffer Overflow Vulnerability Detection

errors occur. Our approach provides a technique for
validating and sanitizing instrumented code through a
semantic function evaluation technique from input data
in C/C++ programs, which are widely used for critical
software. The proposed method is based not only on
information needed to check flaws in a program, but
also on the verification of statements using semantic
code evaluation. The results provide evidence that it is
possible to verify statements prior to their execution,
thereby preventing malicious attacks. Our approach is
differentiated from previous published techniques in
the following ways:

(1) We attempted to verify code vulnerabilities by
generating function sanitization.

(2) Our approach is based on semantic verification
operations, but differs from traditional dynamic
tainting analysis, which inspects results only after
the execution of a program.

We have developed a novel technique which is
useful in enforcing software security monitoring.
However, further studies must be conducted on
sanitization quality activities to enhance our approach.

References

[1] G. Fengjuan, W. Linzhang, and L. Xuandong,
"BovInspector: automatic inspection and repair of
buffer overflow vulnerabilities", 2016 31st
IEEE/ACM International Conference on Automated
Software Engineering (ASE), Singapore, Singapore,
pp. 786-791, Sep. 2016.

[2] T. Zhang, J. Chen, G. Yang, B. Lee, and X. Luo,
"Towards more accurate severity prediction and
fixer recommendation of software bugs", Journal
of Systems and Software, Vol. 117, pp. 166-184,
Mar. 2016.

[3] P. Bisht and P. Madhusudan, V. N. Venkatakrishnan,
"CANDID: Dynamic candidate evaluations for
automatic prevention of SQL injection attacks",

ACM Transactions on Information and System
Security, Vol. 13, No. 2, Article No. 14, Feb.
2010. doi>10.1145/1698750.1698754.

[4] A. Mahmoud and G. Bradshaw, "Semantic topic
models for source code analysis", Empirical
Software Engineering, Vol. 22, No. 4, pp. 1965-
2000, Aug. 2017.

[5] A. Denault, "Defensive programming introduce to
software system Lecture 18", Computer science,
McGill University, pp. 58-72, 2015.

[6] Seacord R. C, "The CERT C Secure Coding
Standard(2nd Edition)", Boston: Addison-Wesley,
pp. 121-153, 2016.

[7] F. Hujainah, R. Bakar, M. Abdulgabber, and K.
Zamli, "Software Requirements Prioritisation: A
Systematic Literature Review on Significance,
Stakeholders, Techniques and Challenges", IEEE
Access, Vol. 6, pp. 71497-71523, Nov. 2018.

[8] T. Ye, Z. Lingming, W. Linzhang, and L.
Xuandong, "An empirical study on detecting and
fixing buffer overflow bugs", 2016 IEEE
International Conference on Software Testing,
Verification and Validation (ICST), Chicago, IL,
USA, pp. 91-101, Apr. 2016.

[9] J. Maletic and M. Collard, "Exploration, analysis,
and manipulation of source code using srcML",
IEEE/ACM 37th IEEE International Conference on
Software Engineering, Florence, Italy, Vol. 2, pp.
951-952, May 2015.

[10] A. Wagner and J. Sametinger, "Using the Juliet
Test Suite to Compare Static Security Scanners",
11th International Conference on Security and
Cryptography (SECRYPT), Vienna, Austria, pp.
244-252, Aug. 2014.

[11] Y. S Jang and J. Y Choi, "Detecting SQL
injection attacks using query result size",
Computers & Security, Vol. 44, pp. 104-118, Jul.
2014.

[12] S. Hossain, M. Hisham, and V. Ishan, "Buffer
overflow patching for C and C++ programs:
rule-based approach", ACM SIGAPP Applied

Journal of KIIT. Vol. 17, No. 9, pp. 133-144, Sep. 30, 2019. pISSN 1598-8619, eISSN 2093-7571 143

Computing Review, Vol. 13, No. 2, pp. 8-19,
Jun. 2013.

[13] S. Panichella, V. Arnaoudova, M. Penta, and G.
Antoniol, "Would static analysis tools help
developers with code reviews", 2015 IEEE 22nd
International Conference on Software Analysis,
Evolution, and Reengineering (SANER),
Montreal, QC, Canada, pp. 161-170, Mar. 2015.

[14] M. Kellogg, V. Dort, S. Millstein, and M. Ernst,
"Lightweight verification of array indexing", In
2018 International Symposium on Software
Testing and Analysis, Amsterdam, Netherlands,
pp. 3-14, Jul. 2018.

[15] J. Maletic and M. Collard, "Exploration, analysis,
and manipulation of source code using srcML",
2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Florence,
Italy, pp. 951-952, May 2015.

[16] S. Su, M. Chen, and Y. Hsueh, "A novel fuzzy
modeling structure-decomposed fuzzy system",
IEEE Transactions on Systems, Vol. 47, No. 8,
pp. 2311-2317, Aug. 2017.

[17] E. Al-Shaer, J. Wei, K. Hamlen, and C. Wang,
"Deception-enhanced threat sensing for resilient
intrusion detection", In Autonomous Cyber
Deception, pp. 147-165, Jan. 2019.

[18] L. Peng and L. Wise-Faberowski, "An unexpected
case of post-operative superior caval vein
syndrome", Cardiology in the Young, Vol. 28,
No. 6, pp. 879-881, Jun. 2018.

[19] J. Wu, Y. Wang, P. Wang, J. Pei, and W.
Wang, "Finding Maximal Significant Linear
Representation between Long Time Series", In
2018 IEEE International Conference on Data
Mining (ICDM) Singapore, Singapore, pp. 1320-
1325, Nov. 2018.

[20] S. Kiebzak, G. Rafert, and C. E. Tucker, "The
effect of patent litigation and patent assertion
entities on entrepreneurial activity", Research
Policy, Vol. 45, No. 1, pp. 218-231, Feb. 2016.

[21] F. A. Louza, S. Gog, and G. P. Telles, "Inducing
enhanced suffix arrays for string collections",
Theoretical Computer Science, Vol. 678, pp.
22-39, May 2017.

[22] Bindu Madhavi Padmanabhuni and Hee Beng
Kuan Tan, "Auditing buffer overflow
vulnerabilities using hybrid static dynamic
analysis", IET Software, Vol. 10, No. 2, pp.
54-61, Apr. 2016.

[23] Y. Sun and J. Gray, "A demonstration-based
model transformation approach to automate model
scalability", Software & Systems Modeling, Vol.
14, No. 3, pp. 1245-1271, Jul. 2015.

[24] C. M. Agulhari, A. Felipe, R. C. Oliveira, and P.
L. Peres, "Manual of the Robust LMI Parser",
Version 3.0, Oct. 2018.

[25] V. Martínez, M. S. Serpa, P. J. Pavan, E. L.
Padoin, and P. O. Navaux, "Performance
Evaluation of Stencil Computations Based on
Source-to-Source Transformations", Latin American
High Performance Computing Conference,
Bucaramanga, Colombia, pp. 213-223, Sep. 2018.

[26] NIST, Software Assurance Reference Dataset,
http://samate.nist.gov/SRD/testsuite.php. [accessed:
Aug. 21, 2019]

[27] CWE, CWE – Common Weakness Enumeration,
http://cwe.mitre.org, [accessed: Aug. 21, 2019]

[28] A. Nanthaamornphong and J. C. Carver,
"Test-Driven Development in scientific software:
a survey", Software Quality Journal, Vol. 25,
No. 2, pp. 343-372, Jun. 2017.

[29] NSA, NSA Center for Assured Software,
http://cps-vo.org/node/1529. [accessed: Aug. 21,
2019]

[30] D. J. Jeon and D. G. Park, "Real-time linux malw
are detection using machine learning", Journal of
KIIT, Vol. 17, No. 7, pp. 111-122, Jul. 2019.

[31] H. K. Chin and J. H. Ahn, "Duplicated control dat
a purging algorithms for SBML protocol tolerating
temporary communication errors", Journal of KIIT,
Vol. 17, No. 5, pp. 21-27, May 2019.

144 Source Code Instrumentation Technique for Buffer Overflow Vulnerability Detection

Author

Young-Su Jang

2011 : M.S degree in Department

of Computer Science from
Korea University

2019 : PhD degrees in
Department of Computer

Science from Korea University
2017. 10 ~ present : Assistant

professor with the smart software department, Korea
Polytechnic

Research interests : secure software engineering, secure
coding, and formal method

	Source Code Instrumentation Technique for Buffer Overflow Vulnerability Detection
	Abstract
	요약
	Ⅰ. Introduction
	Ⅱ. Related works
	Ⅲ. Research overview
	Ⅳ. Implementation
	Ⅴ. Evaluation
	Ⅵ. Conclusion and future work
	References

