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Ⅰ. Introduction

C/C++ is a widely used programming language for 
operating systems, critical software, and system software 

(e.g., e-mail and domain name system servers on the 
Internet). C/C++ developers often use memory 
allocated arrays, which are allocated and deallocated 
automatically without developer intervention. Because 
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Abstract

The requirements of application software are becoming increasingly complex, and the importance of information 
security is increasingly emphasized at the national, organizational and individual levels. In this paper, we designed 
and implemented the Semantic Function Libraries (SFL) white box vulnerability detection library. The SFL 
dynamically locates sensitive Application Programming Interface (API) function calls in C/C++ to detect code 
vulnerabilities at program execution and check source code variable safety conditions. Our research approach is that 
instrumentation checks are performed before working with sensitive API functions to infer various buffer sizes used 
in C/C++ source code and to store information. In addition, the analysis of the check is based on semantic dynamic 
analysis based on API functions. Our proposed technique is useful for previewing software monitoring and for 
predicting and tracking the location of bugs that occur during program operation.

요  약

어플리케이션 소프트웨어의 요구 사항은 갈수로 복잡해지고 있으며, 정보 보안의 중요성 또한 국가, 조직 

및 개인 수준에서 점차 강조되고 있다. 본 논문에서는 Semantic Function Libraries (SFL) 화이트 박스 취약성 

발견 라이브러리를 설계 하고 구현하였다. SFL은 C/C++에서 민감한 Application Programming Interface
(API) 함수 호출을 동적으로 찾아 프로그램 런타임 시에 코드 취약성을 탐지하고 소스코드 변수 안전성 조건 

검사를 수행한다. 우리의 연구 접근 방법은 C/C++ 소스코드에서 사용되는 서로 다른 버퍼 크기를 추측하고 

정보를 저장하여, 민감한 API 함수 작업을 수행하기 전에 인스트루먼트 검사를 먼저 수행한다. 또한 검사에 

대한 분석은 API 함수 기반의 의미론적 동적 분석에 기반을 두었다. 우리가 제안하는 기술은 미리보기 소프트

웨어 모니터링과 프로그램 작동 과정에서 발생하는 버그의 위치를 예측하고 추적하는 데 유용하다.
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of their convenience, memory allocated arrays are used 
to store data from external inputs in the Application 
Programming Interface (API) function (hereinafter 
called “function”) calls. However, memory corruption 
vulnerabilities (e.g., stack allocated overflow) are found 
most commonly in C/C++ applications[1]. Although 
memory corruption vulnerabilities have received 
substantial attention, most solutions have failed to 
address the problem fully[2]. Furthermore, attackers are 
constantly searching for new exploits[3][4]. Most 
solutions presume that if secure coding rules or 
built-in verification functions are used for a program 
code, then the result of that program is safe[4]-[6]. 
However, if certain malicious values are supplied to 
the sanitization function, this does not completely 
protect against all attacks[3][7]. In general, it is 
well-known that both static analysis and dynamic 
analysis must be used to verify software weaknesses 
and for test generation. Each technique provides 
different solutions in terms of reliability, speed, and 
precision. Static analysis provides all potential 
execution paths but requires some heuristic for 
selecting only the relevant paths[8]-[10]. Therefore, it 
can cause false negatives. Dynamic analysis incurs 
high computing overhead and cannot guarantee that all 
possible execution paths are exercised[11][12]. 
Therefore, it has limited defect detection coverage.

In this paper, we propose a look-ahead dynamic 
technique that gives first priority to program protection 
from inappropriate input values so that errors are 
exposed as they occur in the course of executing a 
C/C++ application. This is based on the semantic 
checking of whether a statement follows according to 
the developers’ intentions. The crux of the technique 
is (1) to facilitate the modification of code that causes 
detected errors, (2) to prevent other codes and the 
entire system from being damaged despite the errors 
occurring in some codes, and (3) to complement the 
security weakness that occurs during program 
development or application design. 

Therefore, our technique first analyzes sensitive 

function facets to offer a vulnerability analysis strategy 
for an application. Next, the technique generates a 
function verification operation to sanitize it. API 
statements that have false assertions are classified as 
illegal and are not allowed for execution within the 
application. To evaluate the proposed technique, we 
implemented the Semantic Function Libraries (SFLs) 
tool and tested it on a set of empirical test suites.

The main contributions of this paper are as follows:

l We describe a predictable programming technique 
that models semantic function verification operations 
for analysis.

l We introduce a new technique that estimates 
semantic functions by verifying input values.

The remainder of this paper is organized as 
follows: Section 2 reviews previous studies, and 
Section 3 details our research overview with a sample 
program, and Section 4 presents our experimental 
settings. Section 5 discusses our experimental findings 
and, finally, Section 6 presents our conclusions.

Ⅱ. Related works

2.1 Static-analysis technique

Panichella et al.[13] used the open-source checkers 
ITS4, Flawfinder, and RATS to analyze telecom- 
graded software. They found that a static code 
analyzer could find security vulnerabilities but 
produced many false negatives. In their analysis, the 
results were not compared with trouble reports or 
maintenance costs using industry data. We used a 
similar approach to add verification operations in the 
source code, but our technique is automated and does 
not require developer interventions such as annotations 
to verify an application. In addition, we do not limit 
our analysis to the detection of vulnerability-inducible 
methods. Kellogg et al.[14] proposed a lightweight 
bound-checking (LBC) approach. This technique uses 
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source-to-source transformation to eliminate redundant 
checks. The LBC uses guard zones to separate all 
objects (e.g., the stack, heap, and static areas) in 
memory. No correct program memory can access the 
guard zones. However, the LBC does not handle 
use-after-free bugs (i.e., bugs that reference memory 
after it has been freed). Maletic and Collard[15] 
proposed srcML, which conducts static checks for 
custom software analysis. It consists of a 
representation element and toolkit for converting 
source code between formats. This technique marks 
the inherent syntax by wrapping the source code text 
in XML elements. The names of the elements reflect 
the syntax using tags such as {if}, {while}, and 
{class}. We use a similar approach to generate 
intermediate forms for our source codes.

2.2 Dynamic-analysis technique

Su et al.[16] used Fuzzy testing to challenge the 
reliability of a program. This testing technique 
detected potential vulnerabilities in binaries using test 
inputs to explore program control paths (the sequence 
of statements executed by a program) and trigger 
vulnerabilities. However, this technique cannot generate 
all possible test inputs that cover all program control 
paths. Therefore, vulnerabilities might be by-passed. 
The effectiveness of the dynamic analysis technique is 
based on the quality of test inputs. Without such test 
inputs, dynamic analysis becomes less effective in 
exploring application vulnerabilities. Unlike these 
dynamic approaches, our SFL employs a look-ahead 
monitoring mechanism and generates verification 
operations using our transformer. Thus, we guarantee 
that verification operations cover all control paths in a 
source code. Al-Shaer et al.[17] proposed LLVM, a 
dataflow sanitizer tool for measuring dynamic 
taint-tracking and secret redaction support in annotated 
C/C++ programs at compile-time. This technique tracks 
the feasibility of dynamic taint-tracking for C/C++ 
code that stores information in graph data structures.

Ⅲ. Research overview

Fig. 1 shows a sample user-logon verification C 
program. This sample program consists of one 
Boolean variable (PasswdStus) and three string 
variables (Passwd, Valid_Passwd, and Org_Passwd). 
At line 4 in the main(), the IsPassword() is called to 
determine whether a user is a registered user. At line 4 
in the IsPassword(), gets() function reads the logon 
password from the user. At line 7, the supplied 
password is compared with the authorized user 
password. 

In Fig. 1, gets(Passwd) function in the IsPassword() 
is able to store a maximum of 15 bytes consisting of 
characters of the byte string identified by the Passwd 
variable (note that we ignore the string null terminator 
character). If 20-byte character strings are entered into 
the Passwd variable, then the Passwd variable is 
exploited by entering a string whose size is larger 
than the buffer assigned to hold it. Consequently, 
gets(Passwd) function may be exploited as an error or 
an invasion window.

Consider the following program fragment from 
Fig. 1.

Fig. 1. Simple C program
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Example 1: Given the input (Valid_Passwd=NULL,
Org_Passwd=”EnterMyPasswordOkay”), the program 
generates a statement:
   strcpy(Valid_Passwd, Org_Passwd);
The input is transformed into expressions:
  strcpy(Valid_Passwd, "EnterMyPasswordOkay");

strcpy() function copies a maximum of 19 bytes 
consisting of the characters of the byte string 
identified by Org_Passwd into a character array 
identified by Valid_Passwd. Valid_Passwd is allocated 
15 bytes by the input values. Therefore, Valid_Passwd 
is exploited.

Example 2: Continuing from Example 1, let the 
function for the statement be defined as follows:

 SIZE_buf = 15;
 strncpy(Valid_Passwd, Org_Passwd, SIZE_buf+5);

Org_Passwd is allocated 19 bytes by the input values 
("EnterMyPasswordOkay"). Valid_Passwd is allocated 
15 bytes by NULL. In this case, even though 
strncpy() function is used instead of strcpy() function 
to satisfy C secure coding rules[6], Valid_Passwd is 
exploited. Therefore, the declaration length of the 
variable is not an absolute evaluation element that 
evaluates vulnerability. Even if a semantic 
characteristic exists dynamically in a function, such as 
in Example 2, this is not detected by analyzing the 
static code or syntax structure[2]. Notice that string 
variables are compared only in terms of the structural 
parts of their declaration lengths. This limitation exists 
because static-code or syntax-aware analysis cannot 
detect the semantic characteristics of a function. 

On the other hand, if awareness of the semantic 
characteristics of a function is possible, then the 
original code need not be modified and developed 
using conventional programming practices. Retrofitting 
an application requires manual effort proportional to 
the complexity of the application. Moreover, it is not 
necessary to hinder debugging or maintenance. To 

perform a semantic operation, we need to know the 
set of values held by functions and variables. We 
define a verification operation and the corresponding 
variable validation.

Definition 1 (Semantic verification operation associated 
with a control path). Let the set of function operations 
be denoted by M. For any function operation m, 
program P can take a semantic verification operation 
associated with the control path. Let M0 denote the 
set of benign and safe semantic verification operations 
corresponding to function operation M[3]. Let us 
assume that m and m0 are extracted on the same 
control path and that there is an associated valid 
function representation function Stmt_PA: M -> M0, 
{(m, Stmt_PA(m)) | m ∈ DOMAIN(Stmt_PA)}, and 
Stmt_PA (m) = m0. Let the set of variables (or 
parameters) be denoted by V, and for any input 
variable v, let us assume that m and m0 take on the 
same input variable (i.e., m ≈ m0). 

Therefore, given a function m(v), if we know 
another valuation m0(v), then we can evaluate its 
verification operation and deduce the control path. 
Assertions have been used for performance verification 
with respect to partial correctness to ensure that a 
program does not produce unexpected results for valid 
operations, which are "expected"[18].

Definition 2 (Evaluation of verification assertions on a 
variable). For m0 and the corresponding input variable 
v, we define assertions on variable V. A condition on 
a variable is any Boolean assertion function F: V →
{TRUE, FALSE}, {(v, F(v)) | v ∈ DOMAIN(F)}, and 
F(v): assert (v.maxlen >= v.len) = TRUE. 

Derivation conditions of assertions are Boolean 
functions that are acceptable for any derivation. The 
role of any assertion is to indicate whether the 
assertion is applicable to a derivation[18]. In our 
approach, we can model each operation in terms of its 
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effect on two buffer attributes: maxlen, the number of 
bytes declared for the buffer, and len, the number of 
bytes currently in use[19]. For example, after a set of 
string values are inputted into variables, our approach 
automatically calculates the length of the selected 
character string. This is easily implemented using the 
sizeof() function, which is defined in C functions and 
operations. Therefore, we can trace the buffer related 
variable size and status by analyzing a function’s 
corresponding assertions. Consider the following 
verification assertion of strncy() function in Example 2. 
The assertion is checked as follows:

Valid_Passwd.maxlen ⊇ min(Org_Passwd.len, SIZE_buf+5)
Valid_Passwd.maxlen >= min(Org_Passwd.len, SIZE_buf+5)

Assertion checking is used to determine whether 
each assertion is false or checked in a program. An 
assertion means that Valid_Passwd.len should be 
replaced by min(Org_Passwd.len, SIZE_buf+5) and if 
Valid_Passwd.maxlen < min (Org_Passwd.len, SIZE_ 
buf+5) is TRUE, then this is a fault. Therefore, given 
input variables in a program, a potential exploitation 
can be considered safe if all function assertions are 
TRUE[20].

Ⅳ. Implementation

4.1 The tool: SFL

Our tool consists of three components: (1) 
preprocessing, (2) source code transformation, and (3) 
source code sanitization. Preprocessing is implemented 
using a source code facet analysis technique. The 
source code transformation is implemented using a 
C/C++ source transformation tool. Finally, the source 
code sanitization is implemented using our Pattern 
Analysis (PA) library. 

4.1.1 Preprocessing: Source code function facet 
analysis

We preprocess the source programs text 
segmentation and stop words list. In order to extract 
complete command keywords, we remove comments 
and external libraries. For vulnerability command 
extraction, we utilize suffix array based technique to 
extract vulnerability commands, and then select the 
keywords from them with rules. Specifically, we use 
the phrase discovery algorithm [21], which employs a 
variant of suffix arrays extended with an auxiliary 
data structure. Then, we remove the single words that 
are comments and the phrases which begin or end 
with stop words. We inquire into the words that are 
single words and the phrases. Finally, the filtered 
words and phrases that exceed the com-mand keyword 
frequency threshold T are chosen as command 
keywords. Additionally, removing the safe commands 
can reduce the calculating complexity of the method. 
These results are used to configure the indexed 
fingerprint database (see Section 4.1.2).

Since programs are composed of a set of functions, 
if a vulnerable function exists, the application may be 
vulnerable. Sensitive function analysis of source code 
is significant because vulnerability-inducible functions 
cause potential faults or bugs in a program. Therefore, 
function facet analysis of source code can offer a 
vulnerability analysis strategy for an application. We 
define function keyword to measure function facets. 
Fig. 2 shows an example of a function text 
enumerator based on the coverage of function keyword 
in C/C++.

Enum Method Types
None = 0;
gets = 1;
strcpy = 2;
strcat = 3;
...
fgets = 23;
strncpy = 24;
strncat = 25;

End enum

Fig. 2. Example of function type statements
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Table 1. Summary of notations

Notations Description
FF(kw) The function facet of keyword(kw)

FK(kwj,si)
The frequency of keyword(kw) in
source code(s)

t(kwj,si)
The number of times that keyword(kw)
appears in source code(s)

We assume that we can extract a set KW of q 
keyword from source codes S. Therefore, we define 
the function facet (FF) set as fllows:

  ∪
  




 



    (1)

where i ∈ [1,n], j ∈ [1,q], and FK(kwj,si) represents 
the frequency of functions of keyword kwj appearing 
in the source program si:

  
  




 



   (2)

where t(kwj,si) represents the number of times that  
keyword kwj appears in source code si. During the 
facet analysis process, the function keyword is 
classified as a weakness as follows, where the 
vulnerability-inducible function keyword set KWc 
contains the keyword covered by the vulnerability- 
inducible function:

  
  




 



   (3)

The preprocessing working scheme is described 
briefly in Fig. 3. At the beginning of preprocessing, 
no source code is selected (SP = 0). λ (λ ∈ [0,1]) is 
used to give a tradeoff score between a vulnerable 
function and a safe function. At line 2, the procedure 
reads the first source code s*[22], and then the set 
KWs* of keywords that s* selects is compared with the 
vulnerability-inducible function keyword set KWc. Next, 
the facet relevance score of the vulnerability- inducible 
function is calculated. 

Fig. 3. Preprocessing working scheme

Specifically, since source codes have many different 
facets of vulnerability-inducible functions, we suppose 
that a set of keyword exists whose different subsets 
represent the various underlying facets well. We can 
then cover all the facets by selecting a source code 
subset to cover the keyword. The procedure is 
repeated until all function keyword are analyzed. 
Vulnerability scores indicate the riskiness of the 
vulnerable function. Vulnerability scores range over 0–1, 
with 0 representing no vulnerability and 1 representing 
high vulnerability. 

4.1.2 Tree-based source code transformation

A source code transformation using Abstract Syntax 
Tree (AST) is the logical approach for analyzing an 
application written in C/C++[23]. We implemented 
index fingerprint representations using a robust parser 
[24] capable of extracting syntax trees from source 
code even without a working build environment. In 
particular, this parser does not validate the syntax of 
the source code. Instead, the aim is to extract as 
much information from the source code as possible. 
The AST subtrees correspond to an executable 
statement or control-flow structure in the source code. 
Each subtree can be represented as a fingerprint set 
with fingerprint indexation in a customized database 
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for further reference (e.g., match back-tracking). The 
fingerprint database is indexed. Fingerprints are sorted 
by decreasing weight, hash value, and parent-linked 
nodes. This structure can be used to iterate over the 
database to retrieve function calls and obtain all the 
fingerprints of the child subtrees of a given node. 
That is, the group of each subtree corresponding to an 
instruction statement of exact subtree matches can be 
retrieved by iteration over the indexed fingerprint 
database. 

To perform source code transformation, we used the 
TXL source-code transformation algorithm[25]. The 
TXL algorithm consists of two phases. The first is the 
use of a grammar file to produce a scanner and a 
parser for the grammar. In this phase, our AST is 
constructed from a robust parser and is used as the 
input. The second phase applies the transformation 
rule to the subtree. This specifies any sequence of 
external definitions such as function definitions or 
global declarations (e.g., memset, global_fun). In our 
approach, we preprocessed the source code analysis to 
extract function facets using a function detection 
enumerator. If we only consider a particular function 
facet, our experiment is half-learned and checks the 
shallow functionality of the program. Therefore, we 
can establish a source code transformation strategy to 
analyze a particular function facet. 

We add a function verification operation to 
instrument a set of variables. For example, if x and y 
are two input variables in strcpy() function, the 
operation:
    strcpy (x, y);
results in a verification operation. The transformer 
adds a verification operation prior to this operation as 
follows:
  Stmt_PA (strcpy, x, y, sep);
   (String=Stmt_PA(function_pattern, var1,…, varn, [separator];)

Notice that this function has the original input 
variables and can therefore perform real computation 
along the actual control path taken by the program. 

The conditional expression in the original source code 
is snot modified by our transformer. Fig. 4 shows the 
partial transformed code for the program in Fig. 1.

Fig. 4. Practice example program

4.1.3 Semantic-code based sanitization

Sanitization is a specific process type of input 
validation performed before external inputs are used. 
To guarantee quality assurance of the variable and 
verify the function operation, we implemented a PA 
library that represented the verification pattern 
information of the function in the program control 
path. PA is based on function assertions, which are 
verification conditions wherein a predicate should 
always be true at that point in the code. At runtime, 
if an assertion evaluates as false, it causes an 
assertion failure. The program then crashes or 
produces an assertion exception. 

Fig. 5 shows a heuristic function assertion example 
in the PA library for Stmt_PA(strncpy, dst, src, n). A 
verification operation is performed to check function 
assertion according to the pattern information in PA.

Fig. 5. An example of a string verification operation
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PAs are connected by the Stmt_PA(). Stmt_PA() 
calls a PA that verifies the function variable for 
vulnerability detection. This operation produces an 
exception if the PA returns false. Otherwise, the 
statement may cause vulnerability at runtime. Before a 
statement is executed, PA pre-examines the variable for 
vulnerability. This idea of verifying variables in the 
program control path differs from the traditional 
dynamic tainting analysis, in which inspection is done 
after execution. Thus, we can monitor function 
variables before the statement is executed in an actual 
control path. PA has two major steps: step 1 analyzes 
the grammatical patterns of the statements and then 
computes and stores all variable attributes (i.e., maxlen 
and len). Step 2 computes variable assertions to 
classify vulnerability.

Fig. 6. A brief outline of PA-based estimation

Fig. 6 shows the scheme in brief for verification 
operations. PA calls the Verify_Substitute_Stmt() 
procedure, which verifies the input variables in 
accordance with the verification pattern information. 
This procedure produces an exception if there is no 
assurance in the results. The AnalyzePattern() analyzes 
functions and calculates function variable attributes. 
Function variable assertions, calculated by the 
ComputePatSet(), are stored in PSstmt[], and each 
PSstmt is compared using the ComparePatternValues().

Ⅴ. Evaluation

5.1 Empirical test-suite evaluation

We evaluated the detection accuracy using the Juliet 
test set[26] to assess the effectiveness of the SFL. 
This test set is a collection of C/C++ programs with 
known flaws consisting of 23,957 test cases documented 
by Common Weakness Enumeration (CWE)[27]. It has  
been used to understand other software assurance 
tools’ capabilities[28]. In addition, it covers the top 25 
security errors defined by SANS/MITRE (The MITRE 
Corporation, 2017, http://cwe.mitre.org/). The CWE 
entries were composed of one or more abstract 
categories. For example, the “Buffer overflow” category 
is represented by different CWE entries (e.g., CWE- 
131: incorrect calculation of buffer size; CWE-191: 
integer overflow). 

Therefore, we modeled CWE entries according to 
the “Center for Assured Software 2016” to generate a 
general software security valuation model[29]. This 
security model helps to analyze and interpret the Juliet 
test set results. For accurate analysis, we classified 
every case into two cases. We also removed some 
conditional preprocessor (#ifndef) commands. The test 
set was classified into two types of test cases: flawed 
or “bad” code and “good” code, which contains 
legitimate inputs. The “bad” code is used to check 
whether the proposed SFL successfully detects flaws 
and reports false negatives. On the other hand, the 
“good” code is used to verify whether any false 
positives are reported. If the SFL modifies input, we 
obtain a false positive. 

We performed an experiment to determine whether 
false positives or false negatives were caused by a 
loss of precision. We ran the test set to ensure that 
the SFL successfully detected and prevented flaws. 
The flaws suite includes more than 10 different kinds 
of flaws such as buffer overflow flaws and code 
quality flaws. The results of running the test cases are 
summarized in Table 2.
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Table 2. Juliet test set evaluation results.

Weakness type Test CWEs SLOC
Input Attempts Cases/

Flaws
False

Negatives (%) ArbitrationGood Code Bad Code

Memory
corruption

CWE-120 2,210 8 61 84/84 10.7 9
CWE-126 2,852 6 55 106/106 0 0
CWE-131 2,032 4 42 51/51 1.9 1
CWE-190 3,116 3 67 86/86 0 0
CWE-191 2,191 2 33 38/38 18.4 7

The first section lists the weakness type of the 
security model. “Memory corruption” has the most 
CWE entries (buffer handling) because this is the 
most frequent type of security vulnerability in C/C++ 
programs. The third section lists the size of the 
Source Line of Code (SLOC). The fourth section lists 
the number of test cases of the two types. The fifth 
section shows the number of cases in the test sets and 
the number of flaws detected by the SFL. The sixth 
section shows the rate of false negatives, as there is a 
situation in which the proposed SFL fails. The final 
section shows the number of developer interventions 
(e.g., parse errors).

 
5.2 Performance accuracy

Our proposed technique was compared with three 
existing well-known detection approaches: Flawfinder 
(static analysis; Ver. 1.31), Cppcheck (static analysis; 
Ver. 1.76), and Visual Studio Compiler (static and 
dynamic analysis; Ver. 2015). The accuracy of 
vulnerability detection indicates the number of exactly 
detected flaws. We compared the detection accuracy 
and the time complexity imposed by the approaches. 
The applications were installed on the local host to 
prevent network overhead. We performed test suite 
runs and measured the detection accuracy of each run 
with caching disabled. For reasons of accuracy, we 
performed our experiments three times and report the 
average run time. The Flawfinder tool detects only 
fixed-size buffer overflow flaws, such as exceeding the 
buffer size. The Cppcheck tool can detect buffer 
overflow and format string flaws. Visual Studio 

Compiler found by far the most flaws. 
However, most of them were non-security issues. 

Furthermore, it took the longest time to analyze our 
test set. On the other hand, our SFL tool is effective 
in detecting and preventing flaws. In addition, the SFL 
tool yields 18–23% better accuracy than the Flawfinder 
and Cppcheck tools. 

In addition to detection time, time complexity is an 
important factors for evaluating a detection system. 
Table 3 compares the algorithms with respect to 
deployment requirements. The term 'High' has twice 
the time complexity of the term 'Medium'. The term 
'Very high' has twice the time complexity of the term 
'High'. 

Table 3. Comparison of performance between algorithms

Algorithm Detection Prevention Time
complexity

Flawfinder Yes No Low
Cppcheck Yes No Low
Visual studio compiler Yes No Very high
SFL Yes Yes Very high

Ⅵ. Conclusion and future work

In this paper, we have proposed a technique that 
detects and prevents vulnerabilities in an application. 
In applications, most vulnerabilities stem from 
numerous unexpected input values. However, retrofitting 
an application requires significant resources. It is 
therefore necessary to predict and trace the locations 
of bugs throughout the course of a program's 
operation. It is essential to detect errors and to 
minimize damage when uncontrollable or unexpected 
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errors occur. Our approach provides a technique for 
validating and sanitizing instrumented code through a 
semantic function evaluation technique from input data 
in C/C++ programs, which are widely used for critical 
software. The proposed method is based not only on 
information needed to check flaws in a program, but 
also on the verification of statements using semantic 
code evaluation. The results provide evidence that it is 
possible to verify statements prior to their execution, 
thereby preventing malicious attacks. Our approach is 
differentiated from previous published techniques in 
the following ways:

(1) We attempted to verify code vulnerabilities by 
generating function sanitization.

(2) Our approach is based on semantic verification 
operations, but differs from traditional dynamic 
tainting analysis, which inspects results only after 
the execution of a program.

We have developed a novel technique which is 
useful in enforcing software security monitoring. 
However, further studies must be conducted on 
sanitization quality activities to enhance our approach.

References

[1] G. Fengjuan, W. Linzhang, and L. Xuandong, 
"BovInspector: automatic inspection and repair of 
buffer overflow vulnerabilities", 2016 31st 
IEEE/ACM International Conference on Automated 
Software Engineering (ASE), Singapore, Singapore, 
pp. 786-791, Sep. 2016.

[2] T. Zhang, J. Chen, G. Yang, B. Lee, and X. Luo,  
"Towards more accurate severity prediction and 
fixer recommendation of software bugs", Journal 
of Systems and Software, Vol. 117, pp. 166-184, 
Mar. 2016.

[3] P. Bisht and P. Madhusudan, V. N. Venkatakrishnan, 
"CANDID: Dynamic candidate evaluations for 
automatic prevention of SQL injection attacks", 

ACM Transactions on Information and System 
Security, Vol. 13, No. 2, Article No. 14, Feb. 
2010. doi>10.1145/1698750.1698754.

[4] A. Mahmoud and G. Bradshaw, "Semantic topic 
models for source code analysis", Empirical 
Software Engineering, Vol. 22, No. 4, pp. 1965- 
2000, Aug. 2017.

[5] A. Denault, "Defensive programming introduce to 
software system Lecture 18", Computer science, 
McGill University, pp. 58-72, 2015.

[6] Seacord R. C, "The CERT C Secure Coding 
Standard(2nd Edition)", Boston: Addison-Wesley, 
pp. 121-153, 2016.

[7] F.  Hujainah, R. Bakar, M. Abdulgabber, and K. 
Zamli, "Software Requirements Prioritisation: A 
Systematic Literature Review on Significance, 
Stakeholders, Techniques and Challenges", IEEE 
Access, Vol. 6, pp. 71497-71523, Nov. 2018.

[8] T. Ye, Z. Lingming, W. Linzhang, and L. 
Xuandong, "An empirical study on detecting and 
fixing buffer overflow bugs", 2016 IEEE 
International Conference on Software Testing, 
Verification and Validation (ICST), Chicago, IL, 
USA, pp. 91-101, Apr. 2016. 

[9] J. Maletic and M. Collard, "Exploration, analysis, 
and manipulation of source code using srcML", 
IEEE/ACM 37th IEEE International Conference on 
Software Engineering, Florence, Italy, Vol. 2, pp. 
951-952, May 2015. 

[10] A. Wagner and J. Sametinger, "Using the Juliet 
Test Suite to Compare Static Security Scanners",  
11th International Conference on Security and 
Cryptography (SECRYPT), Vienna, Austria, pp. 
244-252, Aug. 2014.

[11] Y. S Jang and J. Y Choi, "Detecting SQL 
injection attacks using query result size", 
Computers & Security, Vol. 44, pp. 104-118, Jul. 
2014.

[12] S. Hossain, M. Hisham, and V. Ishan, "Buffer 
overflow patching for C and C++ programs: 
rule-based approach", ACM SIGAPP Applied 



Journal of KIIT. Vol. 17, No. 9, pp. 133-144, Sep. 30, 2019. pISSN 1598-8619, eISSN 2093-7571 143

Computing Review, Vol. 13, No. 2, pp. 8-19, 
Jun. 2013.

[13] S. Panichella, V. Arnaoudova, M. Penta, and G. 
Antoniol, "Would static analysis tools help 
developers with code reviews", 2015 IEEE 22nd 
International Conference on Software Analysis, 
Evolution, and Reengineering (SANER), 
Montreal, QC, Canada, pp. 161-170, Mar. 2015.

[14] M. Kellogg, V. Dort, S. Millstein, and M. Ernst, 
"Lightweight verification of array indexing", In 
2018 International Symposium on Software 
Testing and Analysis, Amsterdam, Netherlands, 
pp. 3-14, Jul. 2018.

[15] J. Maletic and M. Collard, "Exploration, analysis, 
and manipulation of source code using srcML", 
2015 IEEE/ACM 37th IEEE International 
Conference on Software Engineering, Florence, 
Italy, pp. 951-952, May 2015. 

[16] S. Su, M. Chen, and Y. Hsueh, "A novel fuzzy 
modeling structure-decomposed fuzzy system", 
IEEE Transactions on Systems, Vol. 47, No. 8, 
pp. 2311-2317, Aug. 2017.

[17] E. Al-Shaer, J. Wei, K. Hamlen, and C. Wang, 
"Deception-enhanced threat sensing for resilient 
intrusion detection", In Autonomous Cyber 
Deception, pp. 147-165, Jan. 2019.

[18] L. Peng and L. Wise-Faberowski, "An unexpected 
case of post-operative superior caval vein 
syndrome", Cardiology in the Young, Vol. 28, 
No. 6, pp. 879-881, Jun. 2018.

[19] J. Wu, Y. Wang, P. Wang, J. Pei, and W. 
Wang, "Finding Maximal Significant Linear 
Representation between Long Time Series", In 
2018 IEEE International Conference on Data 
Mining (ICDM) Singapore, Singapore, pp. 1320- 
1325, Nov. 2018.

[20] S. Kiebzak, G. Rafert, and C. E. Tucker, "The 
effect of patent litigation and patent assertion 
entities on entrepreneurial activity", Research 
Policy, Vol. 45, No. 1, pp. 218-231, Feb. 2016.

[21] F. A. Louza, S. Gog, and G. P. Telles, "Inducing 
enhanced suffix arrays for string collections", 
Theoretical Computer Science, Vol. 678, pp. 
22-39, May 2017.

[22] Bindu Madhavi Padmanabhuni and  Hee Beng 
Kuan Tan, "Auditing buffer overflow 
vulnerabilities using hybrid static dynamic 
analysis", IET Software, Vol. 10, No. 2, pp. 
54-61, Apr. 2016.

[23] Y. Sun and J. Gray, "A demonstration-based 
model transformation approach to automate model 
scalability", Software & Systems Modeling, Vol. 
14, No. 3, pp. 1245-1271, Jul. 2015.

[24] C. M. Agulhari, A. Felipe, R. C. Oliveira, and P. 
L. Peres, "Manual of the Robust LMI Parser", 
Version 3.0, Oct. 2018.

[25] V. Martínez, M. S. Serpa, P. J. Pavan, E. L. 
Padoin, and P. O. Navaux, "Performance 
Evaluation of Stencil Computations Based on 
Source-to-Source Transformations", Latin American 
High Performance Computing Conference, 
Bucaramanga, Colombia, pp. 213-223, Sep. 2018.

[26] NIST, Software Assurance Reference  Dataset, 
http://samate.nist.gov/SRD/testsuite.php. [accessed: 
Aug. 21, 2019]

[27] CWE, CWE – Common Weakness Enumeration, 
http://cwe.mitre.org, [accessed: Aug. 21, 2019]

[28] A. Nanthaamornphong and J. C. Carver, 
"Test-Driven Development in scientific software: 
a survey", Software Quality Journal, Vol. 25, 
No. 2, pp. 343-372, Jun. 2017.

[29] NSA, NSA Center for Assured Software, 
http://cps-vo.org/node/1529. [accessed: Aug. 21, 
2019]

[30] D. J. Jeon and D. G. Park, "Real-time linux malw
are detection using machine learning", Journal of 
KIIT, Vol. 17, No. 7, pp. 111-122, Jul. 2019.

[31] H. K. Chin and J. H. Ahn, "Duplicated control dat
a purging algorithms for SBML protocol tolerating 
temporary communication errors", Journal of KIIT, 
Vol. 17, No. 5, pp. 21-27, May 2019.



144 Source Code Instrumentation Technique for Buffer Overflow Vulnerability Detection

Author

Young-Su Jang

2011 : M.S degree in Department

of Computer Science from
Korea University

2019 : PhD degrees in
Department of Computer

Science from Korea University
2017. 10 ~ present : Assistant

professor with the smart software department, Korea
Polytechnic

Research interests : secure software engineering, secure
coding, and formal method


	Source Code Instrumentation Technique for Buffer Overflow Vulnerability Detection
	Abstract
	요약
	Ⅰ. Introduction
	Ⅱ. Related works
	Ⅲ. Research overview
	Ⅳ. Implementation
	Ⅴ. Evaluation
	Ⅵ. Conclusion and future work
	References


