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Abstract

Cracks on pavement surfaces are critical signs and symptoms of the degradation of pavement structures. 
Image-based pavement crack detection is a challenging problem due to the intensity inhomogeneity, topology 
complexity, low contrast, and noisy texture background. In this paper, we address the problem of pavement crack 
detection and segmentation at pixel-level based on a Deep Neural Network (DNN) using gray-scale images. We 
propose a novel DNN architecture which contains a modified U-net network and a high-level features network. An 
important contribution of this work is the combination of these networks afforded through the fusion layer. To the 
best of our knowledge, this is the first paper introducing this combination for pavement crack segmentation and 
detection problem. The system performance of crack detection and segmentation is enhanced dramatically by using 
our novel architecture. We thoroughly implement and evaluate our proposed system on two open data sets: the Crack 
Forest Dataset (CFD) and the AigleRN dataset. Experimental results demonstrate that our system outperforms eight 
state-of-the-art methods on the same data sets.

요  약

도로 포장면의 크랙(crack)은 도로포장 구조의 열화를 입증하는 중요한 신호와 증상이다. 카메라 영상기반 

도로포장 크랙 탐지는 강도 비균질성, 위상 복잡성, 낮은 대조도 및 노이즈성의 텍스처 배경 때문에 어려운 문

제이다. 본 논문은 흑백영상에 대하여 깊은 신경망(DNN)에 기반하여 픽셀수준의 도로 크랙 탐지 및 분할 문

제에 대해 다룬다. 변형된 U-net 네트워크와 고수준 특징 네트워크를 포함하는 새로운 DNN 구조를 제안한다.
본 연구의 중요 기여는 융합 층을 통해 공급되는 이들 네트워크의 결합 방법이다. 우리가 아는 한, 본 연구는 

보도블럭 크랙 분할 및 탐지 문제를 결합을 소개한 최초의 논문이다. 크랙 탐지 및 분할의 시스템 성능은 새

로운 구조를 사용하여 급격히 향상되었다. 제안된 시스템을 2개의 공개 데이터셋크랙 포레스트 데이터셋

(CFD)와 AigleRN 데이터셋에 대하여 구현하고 평가하였다. 본 논문의 시스템은 여덟 가지의 최신 알고리즘

과 같은 데이터셋으로 실험을 하였을 때, 가장 뛰어난 결과를 보여주었다.
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Ⅰ. Introduction

The detection and segmentation of cracks on a 
pavement surface are the important tasks in a 
pavement maintenance system. The traditional manual 
inspection method is time-consuming, labor-insensitive, 
and potentially hazardous for both inspectors and road 
users. Moreover, manual inspection completely depends 
on the individual specialists experience and knowledge, 
which lead to low objectivity in quantitative analysis 
[1]. For these reasons, image processing based 
techniques for crack detection have attracted significant 
attention in computer vision and other research 
communities. In this work, we focus on developing a 
new approach to automatically detect and segment 
cracks from gray-scale images.

Various crack detection methods have been 
suggested based on image processing. These methods 
can be classified into three categories, namely: 
conventional methods, current methods, and deep 
learning-based methods. The conventional methods 
basically attempted to find suitable thresholds to 
isolate cracks from input images. 

However, these methods did not result in good 
detection due to numerous crack shapes, different 
sizes, and various noises such as shading and intensity 
inhomogeneity. In order to overcome these problems, 
many recent techniques, such as the minimal 
path-Based techniques, have been proposed to detect 
cracks based on the assumption that cracks appear 
darker than surrounding contexts. In general, machine 
learning based methods have been introduced to 
classify cracks on input images based on nominated 
features. The major disadvantage of machine 
learning-based methods is that the system performance 
relies on features and parameters which are usually 
difficult to select. Recently, deep learning-based 
approaches have achieved significant performances in 
detection, classification, and segmentation problems 
without any assumption of data distribution. Deep 
neural networks are able to learn and adjust trainable 

parameters based on numerous of training data 
samples. Therefore, millions of data points are 
necessary to train a deep neural network. More 
specifically, deep learning methods have been 
successfully applied on pixel-wise detection and 
segmentation tasks for medical applications [2][3]. In 
addition, U-shaped networks [2][4] have shown good 
performance with fewer trainable parameters than other 
traditional convolution neural network (CNN) based 
methods for segmentation tasks.

In this paper, we address the problems of crack 
detection and segmentation on gray-scale images with 
a small number of training images using a deep 
learning method based on an end-to-end training 
approach. Our approach is inspired by the well-known 
U-net network [2]. The original U-net network 
structure includes millions number of trainable 
parameters which is not suitable for practical 
applications. Therefore, a modified version of the 
U-net network is introduced in this paper including 
the encoder and decoder branches called the modified 
U-net network, which contains a small number of 
learning parameters. 

In addition, we figure out that the  modified U-net 
network cannot guarantee the system robustness, 
especially in the case of cracks which have small 
sizes. In order to overcome these limitations, a 
high-level features network is proposed to learn deeper 
features from input images independently in another 
branch. A fusion layer is applied to merge matrix 
features from the encoder branch of the modified 
U-net network with the High-level features Network. 
This combination dramatically improves system 
performance with a small amount of training data and 
a small number of learning parameters. 

In the rest of this paper, we review the related 
works in Section II. In Section III, the proposed 
method and network architecture are discussed in 
detail. Two open data sets and experimental results 
are given in Section IV. Finally, Section V concludes 
this paper.
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Ⅱ. Related works

The problems of crack detection and segmentation 
can be considered to be the first step of pavement 
evaluation and maintenance systems, where the purpose 
is to distinguish cracks from other areas on pavement 
surfaces. Crack detection problems are naturally 
challenging due to the inhomogeneity of intensity, 
low-contrast, shadows, and cracks’ complexity.

In early works, crack detection and segmentation 
problems were addressed using conventional edge 
detector algorithms. Zhao et al. proposed an improved 
Canny edge detection algorithm for pavement edge 
detection applications [5]. They mainly used Mallat 
wavelet transform to strengthen the weak edges of 
input images and set the proper threshold based on 
the quadratic optimization of a genetic algorithm. 
Threshold-based approaches were applied due to their 
simplicity and low computation time. Oliveira and 
Correia [6] proposed the use of entropy and dynamic 
threshold methods to automatically segment cracks 
from input images. First, they applied morphology 
filters to reduce the variance of pixel values. A 
dynamic threshold was adopted to extract dark pixels 
which were considered to be crack candidates. After 
dividing threshold image into non-overlapping blocks, 
they computed entropy and applied another dynamic 
threshold in order to obtain final crack results. A fast 
crack detection method based on percolation image 
processing for a large-size concrete surface image was 
introduced in [7]. The termination- and skip-added 
procedures were proposed to reduce the computation 
cost. A Local Binary Pattern was introduced in [8] to 
detect cracks, whereby local neighbors were first 
classified into smooth areas and rough areas. The local 
pattern was applied on the rough area in order to 
obtain structure information. The Laplacian of 
Gaussian algorithm was presented for detecting cracks 
on road surfaces [9][10]. Generally, these conventional 
methods are sensitive to noise, which leads to 
unreliable results in poor lighting conditions.

More recently, Minimal Path-Based techniques were 
widely applied to detect cracks from images. In these 
techniques, an image was considered to be a graph of 
pixels weighted by pixel intensities. A minimal path 
was defined as the path in which the sum of pixel 
intensities was the smallest value. Nguyen et al. 
introduced a method of calculating features along 
every free-form path which was able to detect cracks 
with any form and any orientation [11] namely 
Free-Form Anisotropy (FFA). A dynamic programming 
implementation of the FFA approach was presented by 
Avila et al. in [12]. Amhaz et al. presented a 
Minimal Path Selection (MPS) approach where the end 
points of a crack were selected from a local scale and 
the minimal part of the crack was selected from a 
global scale [13][14]. Another more general method 
was presented by Kaul et al. in [15], in which 
complex curves were estimated without knowledge of 
either the endpoints or the topologies of curves. Their 
algorithm required only one arbitrary initial point to 
detect the complete curve. A fully-automatic method 
was also proposed [16]. 

They developed a geodesic shadow-removal 
algorithm to remove pavement shadows from input 
images and generated probability maps based on a 
tensor voting algorithm. A set of crack seeds was 
sampled from a crack probability map. Finally, 
minimum spanning trees were used to extract the final 
crack curves. A multiple-scale fusion crack detection 
(MFCD) approach based on the minimal intensity path 
was introduced by Li et al. [17]. The authors 
estimated the crack candidates at each scale and 
evaluated them based on several statistical hypotheses. 
The main disadvantage of minimal path-based method 
is that the computation cost is too high for real-time 
application.

In additional, a numerous of approaches relied on 
machine learning algorithms to classify crack and 
non-crack images or detect the cracks’ positions from 
input images were proposed. A fully automatic crack 
detection system was proposed called CrackIT 
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[18][19], where different classification strategies were 
applied to classify the cracks on non-overlapping 
image blocks. Cord et al. proposed an approach using 
texture patterns based on AdaBoost classifier. In 
addition, the Support Vector Machine (SVM) classifier 
was applied to classify crack and non-crack images 
based on texture and shape descriptors [20] and 
graph-based features [21]. The Support Vector 
Machine-based method was applied in order to 
compute probability maps using information on 
multi-scale neighborhoods; this was called a 
Probabilistic Generative Model - Support Vector 
Machine (PGM-SVM) [22]. In addition, the Random 
Structure Forest-based method demonstrated good 
performance as well [23]. However, features extraction 
and selection steps, which are challenging tasks, are 
necessary to applied machine learning-based approaches.

In recent years, deep learning has demonstrated 
significant performance enhancements in image 
classification, detection, and segmentation tasks [24]. 
Zhang et al. proposed the ConvNets method [25], 
which included four convolution layers, four 
max-pooling layers, and two fully connected layers, to 
classify an individual pixel in terms of whether or not 
it belonged to a crack, based on local patch 
information. A combination between CNNs and the 
sliding window technique for detecting cracks was 
proposed in [26]. A neural network classifier trained 
on ImageNet pre-trained VGG-16 DCNN features was 
proposed in order to distinguish between crack images 
and non-crack images [27]. Fan et al. [28] addressed 
the problem of automatic crack detection based on a 
structured prediction with CNN. On the other hand, 
CNN was applied to calculate the mean texture depth 
(MTD) of a crack without computing the surface 
texture features statistics [29]. The proposed network 
included only one convolution layer, one pooling, and 
one fully connected layer. 

However, thousands to millions of images are 
necessary for training the network. Zhang et al. 
proposed CrackNet [30] to detect cracks on 3D 

asphalt surfaces with four layers and included more 
than one million parameters that were trained in the 
learning process. A recurrent neural network (RNN) 
version called CrackNet-R was proposed in [31] for 
fully automated pixel-level crack detection on 
three-dimensional (3D) asphalt pavement surfaces. An 
end-to-end style processing approach was proposed in 
[32] called a fully convolutional network (FCN). The 
down-sampling branch was from the famous VGG19 
networks [33], and the up-sampling branch was 
implemented by adding specific layers from 
convolutional layers and deconvolution layers. Due to 
the use of VGG19, the number of learning parameters 
was up to millions, which much more than in our 
proposed approach. In general, the aforementioned 
deep learning-based methods required substantial 
amounts of input data images, and the learning time 
was extensive due to the excessive number of 
parameters that need to be learned.

In order to overcome these weaknesses, we propose 
a new network architecture for crack detection and 
segmentation at the pixel-level. The parameters in the 
proposed method are trained as an end-to-end style 
with only one input channel. The outputs of high-level 
features and low-level features, which were extracted 
independently, were fused so as to enhance the system 
performance. Moreover, our proposed network 
architecture can be considered a lightweight network, 
since the number of parameters trained during the 
learning task is around 500,000 parameters. We 
carefully tested and compared our proposed network 
architectures with other methods, including recent 
methods and other deep learning-based methods, on 
the same data sets.

Ⅲ. Methodology

Our approach mainly involves three steps. First, the 
input image is converted to gray-scale and 
pre-processed so as to reduce the effects of noise 
before being the input of the proposed network. The 
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min-max normalization, histogram equalization, and 
Gama correction methods are adopted for the 
preprocessing task. Second, we employ a self-design 
network in order to learn the crack features from the 
input image. The proposed deep neural network 
includes two different feature extraction branches based 
on a convolution neural network with a small number 
of trainable parameters. In detail, the modified U-net 
network is introduced in the first subbranch. On the 
other hand, we propose an additional branch network 
to extract high level features. The learning features 
from the encoder branch and high-level features 
network are independent. The fusion layer allows us 
to merge the low-level features from our modified 
U-net network with the high-level features for further 
processing based on sharing parameters. The entire 
system is trained in an end-to-end fashion. The output 
of the system is the probability segmentation map.  

Finally, we simply apply a threshold in order to 
obtain the binary output map. With a small amount of 
training data, our method achieves impressive detection 
results. A schematic overview of all of the processing 
steps is depicted in Fig. 1. The following subsections 
discuss these aforementioned steps in details.

3.1 Data preprocessing

Generally, in case of developing a deep network 
with high accuracy in a various situations, such as 
different levels of illumination or different shapes, we 
need to collect and label a large amount of data sets. 
Unfortunately, this is time-consuming and has a high 
cost. In order to address this problem, we apply 
simple and conventional preprocessing algorithms on 

the input image prior to training so as to reduce the 
effect of noise and enhance the system performance.

In detail, the input image is converted to gray-scale 
and normalized by min-max normalization to increase 
the contrast of the gray-scale image. The normalization 
image is generated by the following equation.

 max min

  min            (1)

where I is the input image, m in  and max  are the 

minimum and maximum pixel value of input image I, 
respectively, and   is the normalized image. 

Then, the Contrast Limited Adaptive Histogram 
Equalization (CLAHE) method is applied in order to 
improve the contrast of the input image by adaptive 
histogram equalization [34].

Finally, Gamma correction is applied as the 
following equation to correct the image’s luminance.

  
 



         (2)

where I is the input image of Gamma correction,  is 
the correction parameter, and  is the 
pre-processed image.

3.2 Network architecture

The proposed network architecture is inspired by 
the U-shaped structure networks. A modified version 
of U-net network is firstly introduced. In additional, 
we proposed a high-level feature network in order to 
learn deeper features separately. 

Fig. 1. Overview of crack prediction
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The fusion layer is then adopted to combine the 
low-level features and high-level features. These 
modifications in the network architecture boost the 
system performance by a surprising amount. We 
separate the network architecture into two main 
networks: the modified U-net network and the 
high-level features network, as shown in Fig. 2.

3.2.1 Modified U-net network

The first part of the network architecture is based 
on the U-net architecture called the modified U-net 
network. It starts with a down-sampling (encoding) 
subbranch including four states. Each state includes 
two 3×3 convolution layers followed by a rectified 
linear unit (ReLU) [35] activation function, which has 
computational efficiency and is suitable for deep 
networks. Compared with the original U-net, we 
propose the use of zero-padding to retain the image 
shape after convolution layers. Moreover, Batch 
Normalization [36][37] is also adopted after each 
convolution layer in order to prevent an internal 
covariant shift as well as to ensure faster training 
convergence. A dropout layer [38] is applied between 

the convolution layers in the same state so as to 
prevent over-fitting of the system and improve the 
generalization of the network architecture. The dropout 
ratio is set to 0.2 after several experiments. Similar to 
U-net, the 2×2 max-pooling layer halves the resolution 
of the input matrix at the end of each stage, except 
for the last state. The number of filters in each layer 
is selected after several attempts, and the selected 
filter sizes are turnings of 4, 8, 16, and 32, as 
depicted in Fig. 2. In the deepest stage, the output 
layer matrix is merged with a high-level features 
network.

The up-sampling branch is based on a 3x3 
de-convolution layer and convolution with ReLU, as 
well as zero-padding to recover the original size of 
input image. The architecture includes a contracting 
path to capture the context and a symmetric expanding 
path, as stated from the original U-net. Batch 
normalization and dropout layers are also applied on 
the up-sampling branch. However, the number of 
filters is decreased as follows: 32, 16, eight, and four. 
Finally, at the end of the network, the 1x1 
convolution layer is adopted in order to obtain the 
final probability map.

Fig. 2. Schematic architecture of the proposed network
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3.2.2 High-level feature network

As aforementioned, the high-level feature network is 
proposed to extract deeper features and work 
independently with the modified U-net network. A 
very deep convolutional network for image recognition 
was proposed in [33]. While this approach is 
well-known, the number of trainable parameters was 
relatively high due to the increased number of filters. 
We propose using a network called the high-level 
features network with only four stages of 3×3 
convolution layers with ReLU, zero-padding, and 2×2 
max-pooling layers, as presented in Fig. 2. 

In the first two stages, we use two convolution 
layers in each stage, with the number of filters being 
16, 16 and 32, 32, respectively. In contrast, in the 
last two stages, we apply three convolution layers in 
each stage with the filter sizes of 64, 64, 64, 128, 
128, and 128, respectively. At the end of each stage, 
a 2×2 max-pooling layer is applied so as to reduce 
the sizes of the feature maps. We apply Batch- 
normalization immediately following each convolution 
layer. In the final stage, the feature map is merged 
with the feature maps from the encoder branch of the 
modified U-net network by the fusion layer. None of 
the layers used in our proposed architecture are fully 
connected.

3.3 Data post processing

The output or the network is the probability map 
which has value in range [0, 1]. The final binary 
output is created by using threshold value   as 
shown in the following equation. 

   if  ≥

 
      (3)

where  is the final binary output image,   is 
the threshold value and  is the probability 
map which is the output from the trained network.

Ⅳ. Experiments

4.1 Dataset

Two open datasets are selected to evaluate our 
proposed approach. The Crack Forest Dataset (CFD) 
includes 118 RGB images with a resolution of 
320x480 pixels [23]. These data are images of 
pavements in Beijing, China that were captured on an 
iPhone 5. All of the images are converted to 
gray-scale prior to further processing. In addition, the 
AigleRN dataset contains 38 gray-scale images. These 
images are gathered from France with a resolution of 
311×462 pixels and 991×462 pixels and have been 
pre-processed in order to reduce illumination effects. 
For the first two experiments, we trained the network 
on two datasets independently. In the first experiment 
on the CFD dataset, we randomly select 83 images 
(70%) for training and 35 images (30%) for testing. 
In the second experiment on the AigleRN dataset, we 
randomly choose 27 images (70%) for training and 11 
images (30%) for testing. Finally, we also investigate 
the network performance with cross data by using the 
CFD dataset for training and the AigleRN dataset for 
testing, and conversely.

4.1 Experimental setup

Our proposed method is implemented with the 
Google TensorFlow Keras Library, OpenCV Python 
and trained on a workstation with Intel Xeon E5-1620 
3.60GHz CPU, 16GB RAM, and Nvidia Tesla K40 
GPU.

In pre-processing step, we chose a small region 
size of 8×8 and the contrast limiting of 2.0 for the 
CLAHE algorithm. We select    for the 
Gamma correction method. These methods are 
executed by OpenCV Python. The network is trained 
on sub-images (patches). We randomly select 200,000 
samples from the training dataset with a patch size of 
40x40 for training our network. The training dataset is 
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divided into 180,000 samples for training and 20,000 
for validation. The training is performed for 100 
epochs with a mini-batch size of 32 patches; the 
training time is almost 14 hours. Training the deep 
neural networks require stochastic gradient-based 
optimization in order to minimize cost function.

In testing phase, the crack probability of each pixel 
is generated by averaging the multiple prediction with 
overlapping patches. Multiple consecutive overlapping 
patches are extracted in each testing image with a 
specific stride of 5. Then, the crack probability of 
each pixel is computed by averaging the probability of 
all predicted patches which cover the pixels. A darker 
pixel is considered to be more likely to be a crack 
pixel. Finally, the simple decision probability is 
adopted to generate the binary output images, as 
depicted in Fig. 3.

In order to confirm the effectiveness of our 
method, we compare it with eight state-of-the-art 
methods: FFA [11][12], CrackTree[16], CrackIT [18][19], 
MPS [13][14], CrackForest [23], MFCD [17], PMG-SVM 
[22], and CNN[28]. We present the performances of 
these networks according to precision (Pr), recall (Re), 
and F1-score (F1) metrics. These metrics are computed 
by true positive (TP), false negative (FN), and false 
positive (FP), as presented in Table 1.

Fig. 3. Crack prediction results by our proposed method
(From top to bottom: original images, ground truth,

probability map, binary output)

Table 1. Calculations of system performance

Pr Re 






×Pr

Pr×

It is difficult to acquire high quality of ground 
truth for real images due to the transitional area 
between crack and non-crack pixels. The tolerance 
margins for measuring the coincident between ground 
truth and detected cracks are accepted in the 
evaluation to be five pixels as in [17][23] and two 
pixels  as in [14][22][28]. In this paper, we show 
performance in both cases for comparison.

4.2 Evaluation

4.2.1 Results on CFD dataset

The CFD data set is selected in this section to 
evaluate the performance of our proposed approach. 
The decision probability   is set at 0.7. The 
numerical comparisons of our proposed method with 
other state-of-the-art methods are shown in Table 2 
and Table 3 with the tolerance margins of 5 pixels 
and 2 pixels, respectively. With a tolerance margin of 
five pixels, our proposed approach outperform five 
state-of-the-art methods with significantly enhanced 
performance from 89.90% to 95.67%, 89.47% to 
93.38%, and 89.68% to 94.51% for precision, recall, 
and F1-score, respectively. These results confirm that 
the deep-learning-based approach achieved the highest 
performance.

Table 2. Crack detection results with 5 pixels of tolerance
margin on CFD dataset

Method Pr(%) Pr(%) (%)

CrackTree [16] 73.22 76.45 70.80

CrackIT [18, 19] 67.23 76.69 71.64

FFA [11, 12] 78.56 68.43 73.15

CrackForest [23] 82.28 89.44 85.71

MFCD [17] 89.90 89.47 88.04

Proposed Method 95.67 93.38 94.51
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Table 3. Crack detection results with 2 pixels of tolerance
margin on CFD dataset

Method Pr(%) Pr(%) (%)

CrackForest [23] 74.66 95.14 83.18

MFCD [17] 85.80 59.70 68.90

PMG-SVM [22] 90.70 84.60 87.01

CNN [28] 91.19 94.81 92.96

Proposed Method 93.06 89.31 91.14

Fig. 4. Crack prediction results on CFD dataset (From top
to bottom: Original image, ground truth, MFCD [17], CNN

[28] and our results

Table 3 show a comparison between our approach 
and the other four methods, including the deep 
learning-based method [28]. This CNN network is 
based on a VGG-net structure [33], which includes 
convolution layers, max-pooling layers, and fully- 
connected layers. Our network structure take advantage 
of extract deep features by using deep-level features 
and the end-to-end training style of U-net shape to 
achieve the highest precision, which is computed 
based on the number of corrected pixels. 

An illustration of the results obtaining by our 
proposed method and the other two latest methods 
including MFCD [17] and CNN-based method [28] is 
depicted in Fig. 4, as well as the original image and 

ground truth. While the MFCD method [17] fail to 
detect small cracks, we observe that the CNN-based 
method [28] extracted cracks with a wider crack 
width, which led to higher recall value. The 
effectiveness of our network architecture for 
segmentation tasks for thinner cracks is confirmed by 
observation. 

4.2.2 Results on AigleRN dataset

Compared to CFD data set images, the AigleRN 
data set images have more complicated textures. We 
select the decision probability for the AigleRN dataset 
as 0.6. The overall performances are presented in 
Table 4 and Table 5 with tolerance margins of 5 
pixels and 2 pixels, respectively. It is also observed 
that our proposed approach achieve better performance 
than all other approaches in all evaluation metrics. 
The Crack Forest [23] algorithm shows a good result 
compared to the other approaches. However, it is clear 
that deep learning-based approaches significantly 
enhance detection and segmentation performance. 
Furthermore, our proposed network architecture achieve 
better performance than the another approach based on 
CNN [28], as shown in Table 5. 

Table 4. Crack detection results with 5 pixels of tolerance
margin on AigleRN dataset

Method Pr(%) Pr(%) (%)
CrackIT [18][19] 76.85 74.32 75.56
FFA [11][12] 73.22 87.52 79.73
MPS [13][14] 86.66 90.06 88.33
CrackForest [23] 90.28 86.58 88.59
Proposed Method 93.55 93.91 93.68

Table 5. Crack detection results with 2 pixels of tolerance
margin on AigleRN dataset

Method Pr(%) Pr(%) (%)
FFA [11][12] 76.88 68.12 72.23
MPS [13][14] 82.63 84.10 83.36
CNN [28] 91.78 88.12 89.54
Proposed Method 92.03 89.74 90.78
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Fig. 5. Detection results on AigleRN dataset. from left to right: original images, ground truth images, FFA [11][12], MPS
[13][14], MFCD [17], CNN [28], and our results

Fig. 6. Detection results on AigleRN dataset. from top to
bottom: original images, ground truth images, FFA [11,
12], MPS [13][14], MFCD [17], CNN [28], and our results

The detection results of the different approaches on 
the AigleRN Dataset, including FFA [11][12], MPS 
[13][14], MFCD [17], CNN [28], and the proposed 
method are presented in Fig. 5 and Fig. 6. These 
figures demonstrate that the FFA [11][12] method is 
able to find some cracks that appear to be 
significantly different to the background, however it is 
unable to find the details of small cracks. While the 
MPS method is more effective in finding cracks from 
a global viewpoint, it can not extract full cracks due 
to the intensity changes. While the MPS method is 
more effective in finding cracks from a global 
viewpoint, it cannot extract full cracks due to the 
intensity changes.

The CNN-based method [28] show good performance 
in terms of distinguishing the crack from the 
background; however, the CNN-based approach still 
has several false alarms. Our proposed method 
overcome these problems through a combination of 
high-level features networks (which consist of 
convolution layers and max-pooling layers) and the 
modified U-net network. This combination make our 
network architecture more effective in terms of 
learning deep features and retaining the geometric 
structure of the input image by the U-shape network.
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4.2.3 Results on cross dataset

This section describes the two experiments: i) 
training on CFD and testing on AigleRN, and ii) 
training on AigleRN and testing on CFD. We also 
provide experimental results with a tolerance margin 
of two pixels and five pixels in Table 4 and Table 5, 
respectively. The detection examples are depicted in 
Fig. 7. We observe that the predicted cracks on the 
AigleRN dataset by the trained mode on the CFD 
dataset are very thick due to the dataset 
characteristics. Weak cracks on the AigleRN dataset 
are overlooked, which decrease detection performance. 
Conversely, the predicted results on the trained model 
on the AigleRN dataset show that it is able to 
segment thin cracks, leading to high precision but low 
recall metrics. The detection examples are depicted in 
Fig. 7.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7. Detection results on cross data generation. (a), (b),
(c), (d) Original images and ground truth of CFD dataset
and AigleRN dataset respectively, (e) Training / testing:
CFD / CFD, (f) Training / testing: AigleRN / AigleRN,
(g) Training / testing: AigleRN / CFD, (h) Training /

testing: CFD / AigleRN

Ⅴ. Conclusions

An effective approach for automatic road crack 
detection at the pixel level based on a deep neural 
network was introduced in this paper. We propose a 
novel network architecture which combined the 
modified U-net network and the high-level features 
network using a fusion layer. The training is 
implemented in an end-to-end style. After applying 
conventional pre-processing algorithms, we train our 
network with a small number of input images. The 
proposed network architecture outperformed eight 
state-of-the-art methods on two published data sets. In 
terms of cross data generation, we observe that the 
trained models are affected by label data. The thinning 
of cracks in the training sample images led to 
degradation of the segmentation results. In fact, the 
ground truth label was made manually. Therefore, the 
system is able to achieve better performance in the 
case of a carefully labeled dataset. Based on these 
achievements, the proposed network architecture can be 
applied in further studies on different types of dataset, 
such as vessel segmentation, road segmentation from 
satellite images. In future, this work is able to use in 
embedded monitoring system for real applications such 
as road or bridge surface monitoring systems.
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