
Journal of KIIT. Vol. 17, No. 5, pp. 21-27, May 31, 2019. pISSN 1598-8619, eISSN 2093-7571 21

 * Dept. of Law, Kyonggi University
 - ORCID: https://orcid.org/0000-0002-7307-6140
 ** School of Computer Science & Eng., Kyonggi University
 - ORCID: https://orcid.org/0000-0001-8776-5185

⋅Received: Apr. 04, 2019, Revised: May 27, 2019, Accepted: May 30, 2019
⋅Corresponding Author: Jin-Ho Ahn
 School of Computer Science & Eng., Kyonggi University, 154-42
 Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, Korea,
 Tel.: +82-31-249-9674, Email: jhahn@kgu.ac.kr

Duplicated Control Data Purging Algorithms for SBML Protocol
Tolerating Temporary Communication Errors

Hee-Kwon Chin*, Jin-Ho Ahn**

This work was supported by Kyonggi University HubCon(Humanities Based Convergence) Research Grant 2014
(Project Number: 2014-001-HubCon).

Abstract

The sender-based message logging protocol tolerating temporary communication errors potentially has the complete
recovery data for every message maintained in the volatile storage of its sender as well as in volatile storages of
senders of its dependents. This paper presents two duplicated control data purging algorithms to expunge needless
recovery data from volatile storages of senders of the dependents without requiring any extra control messages. The
first algorithm satisfies this goal with a very little overhead by piggybacking an integer value on the notification and
check messages about the receive sequence number of every message. The other algorithm exploits a table with
piggybacking data to boost expunging needless recovery data and have enough available space of volatile storage
remain long to the hilt. The experimental outcomes illustrate the two presented algorithms perform vastly better than
the traditional one in terms of volatile storage availability.

요 약

일시적인 통신 오류를 포용하는 송신자 기반 메시지 로깅 프로토콜은 각 메시지를 위한 완전한 회복데이터

를 메시지 송신자의 휘발성 저장소뿐만 아니라 그 메시지에 종속된 메시지들의 송신자 저장소에도 유지도록

할 수 있다. 본 논문에서 각 메시지의 종속된 메시지들의 송신자 휘발성 저장소로부터 불필요한 회복데이터를

제거하며 어떠한 추가 제어 메시지도 요구하지 않는 두 개의 중복된 제어 데이터 제거 알고리즘을 제안한다.
첫 번째 알고리즘은 초저비용으로 이러한 목적을 만족시키기 위해 각 메시지의 수신 일련번호에 대한 알림메

시지와 확인 메시지에 한 정수 값만을 포함시킨다. 두 번째 알고리즘은 피기백 정보를 포함한 하나의 테이블

을 이용하여 불필요한 회복데이터 제거를 가속화하고 휘발성 저장소의 충분한 가용 공간이 가능한 오랫동안

유지되도록 한다. 실험 결과는 제안한 두 알고리즘이 휘발성 저장소 가용성 측면에서 기존 알고리즘에 비해

상당히 성능이 좋다는 것을 보여준다.

Keywords
distributed system, fault-tolerance, consistent recovery, message logging, log purging

http://dx.doi.org/10.14801/jkiit.2019.17.5.21

https://crossmark.crossref.org/dialog/?doi=10.14801/jkiit.2019.17.5.21&domain=http://ki-it.com/&uri_scheme=http:&cm_version=v1.5

22 Duplicated Control Data Purging Algorithms for SBML Protocol Tolerating Temporary Communication Errors

Ⅰ. Introduction

Currently, as a lot of very powerful
micro-processors and high speed network hardwares
are produced at low prices, large-scale distributed
systems, composed of heterogeneous inter-connected
nodes, may become the basis of high-performance and
inexpensive parallel processing environments[1].
Therefore, long-running scientific applications on
large-scale distributed systems can concurrently use all
the available resources in clusters of heterogeneous
computers[2][3]. However, when designing and
implementing the systems for this purpose, an
important problem should be considered. The problem
is that as their size becomes greatly larger, their
vulnerability to node failures may raise together[2][3].
Thus, they require ways to allow the applications
computation to persist despite future crashes.
Moreover, the techniques should not result in high
overhead. With deliberately saving messages received
by each process on volatile or stable storage with its
checkpoints, log-based rollback recovery allows a
system to be restored beyond its latest globally
consistent state. This behavioral property is beneficial
for the application fields with the difficulty of rolling
back to the earlier state. Among this kind of
techniques, sender-based message logging(SBML)[4]-[7]
allows each message to be saved on its sender's
volatile storage with no synchronous logging on stable
storage. Therefore, it's normal operation overhead is
much smaller than that of the receiver-based message
logging(RBML)[8].

Although it has several advantages like being
completely implemented as a software solution and
supporting lower cost fault-tolerance compared to
RBML, it holds two weaknesses in case there occur
some temporary communication errors [4]. First, as the
errors potentially have some messages received be
partially logged, but their subsequently received
messages, fully logged, the recovery process of the

original SBML[5]-[7] may continue to perform no
longer in case of failures of their receivers. Next, if
several application messages may not be totally logged
due to the transitory communication errors, this
situation may make every send function call invoked
after the last received message postponed till the
termination of their fully logging procedures is notified
by their receivers. To overcome this kind of
shortcoming, our previous work presented a consistent
SBML protocol enabling every process to piggyback a
little control data for partially logged messages on
each control message. In this case, the transmitter of
every previously sent message can get the receive
sequence number(rsn) granted for the message. But, it
potentially have the complete recovery data for every
message maintained both on the volatile storage of its
sender and on volatile storages of senders of its
dependents. This paper proposes selective stable
message log purging algorithms to expunge needless
recovery data from volatile storages of their
dependents' senders without resulting in any extra
control messages. This beneficial feature can be
attained by piggybacking different size of data about
receive sequence numbers with no extra messages for
logging. The first algorithm only piggybacks an integer
value with no extra messages for logging to impose
minimum overhead on network link. The second
exploits a table with piggybacking data to boost
expunging needless recovery data and have enough
available space of volatile storage remain long to the
hilt.

Ⅱ. The Proposed Algorithms

The original SBML[5]-[7] has the following two

problems.

Ÿ Potential Inconsistency problem and high recovery
cost: its recovery process may not continue to go
ahead when temporary transmission errors between

Journal of KIIT. Vol. 17, No. 5, pp. 21-27, May 31, 2019. pISSN 1598-8619, eISSN 2093-7571 23

failed and other processes occur and so should void
rsns of completely logged messages and re-execute
a large number of completely logging operations.

Ÿ Failure-free performance degradation: every send
function call invoked after the last received message
has to be postponed till the termination of their
fully logging procedures is notified by their
receivers.

To address these issues, our previous SBML
protocol in [4] was proposed that piggybacks rsns of
all the unstable messages on each notification message
for a message received right before to its sender. So,
this beneficial feature can ensure not only consistent
recovery, but also processing postponed messages
scheduled to be transmitted much earlier with a little
extra cost despite temporary communication faults
occurrence. The protocol has every process hold the
variables as follows.

Ÿ Ssni: the send sequence number(SSN) of the last
message Pi has sent before.

Ÿ Rsni: the receive sequence number(RSN) of the last
message Pi has deliver before.

Ÿ SsnVectori: a table where SSNVti[j] is the ssn of
the latest message from process Pj that Pi delivered
to the application.

Ÿ Sendlgi: a set keeping e(rcvr, ssn, rsn, data) for
every message Pi has sent. Here, element e is the
recovery data of a message consisting of the four
fields, the identifier of receiver(RID), SSN, RSN
and data of the message.

Ÿ UMLgi: a set keeping e(sndr, ssn, rcvr, rsn) from
recovery data for all unstable messages included in
the notification message to Pi. Here, e is the
recovery data of each unstable message, where the
four fields are composed of its sender's
identifier(SID), SSN, RID and RSN.

Ÿ stableRSNi: the RSN of the last message delivered
to Pi or saved when checkpointing. It is exploited

for indicating which messages are currently stable.

In the protocol, on delivering the rsn value of
message m to q from p, it piggybacks recovery data
about all unstable received ones before m and after its
last checkpoint on the notification message. A message
is called unstable if its dependents don't currently have
complete information about its fully logging. In
contrast, a message is named, stable, if its property is
opposite to that of unstable message. Moreover, the
recovery data of each piggybacked unstable message is
composed of three fields, its RSN, SSN, and SID. As
q obtains the notification message, it should hold the
recovery data for the unstable messages attached to
the notification message in its memory buffer while
m's rsn is reflected into its own log element. The
check message for the RSN receipt of m triggers
invoking every send function call requested after the
unstable messages, but postponed till the termination
of their fully logging procedures is notified by their
receivers. For instance, when p2 recognizes fully
logging of m3 on p4's volatile buffer in Fig. 1, it
makes every postponed send function call invoked for
actually transmitting out it because the rsn values of
all the three messages obtained from p4 can be
delivered to p2 during recovery unlike the original
SBML. If p tries to save a local checkpointed state, it
also enables every postponed send function calls
before this state to start executing.

However, it may save not only the complete
recovery data for every message on its sender’s volatile
storage, Sendlgsndr, but also on the volatile storages of
senders of its dependents, UMLgP. For instance, after
the check messages about the receipt of m1's and m2's
RSNs can be obtained by p2 from p1 and p3 in Fig.
1, the recovery data for every message exists on both
volatile storages of its sender and its successor’s
sender. For this purpose, it needs cost-effective log
purging algorithms to expunge needless recovery data
from volatile storages of senders of message
dependents.

24 Duplicated Control Data Purging Algorithms for SBML Protocol Tolerating Temporary Communication Errors

Fig. 1. A case depicting shortcomings of [4]

Fig. 2. A case depicting effectiveness of L-PURGER

For this purpose, one of two stable message log
purging algorithms requiring no extra control message
is first introduced, called L-PURGER, enabling a
process to piggyback an integer value stableRSNp on
each notification or acknowledgment control message.
Here, stableRSNp is the RSN of the last message
which was kept in its sender’s volatile memory and
which has been received and seen by p. For instance,
if a new message m4 is delivered to p2 from p4, p2
increases its RSN and reply with it with stableRSN2 to
p4, which can remove the recovery data of m1 and m2
from its volatile storage in Fig. 2.

Also, if p4 has previously received several messages
and p2 is the transmitter of their dependents, p2 can
expunge the duplicated recovery data about the
messages from the volatile storage of p2, UMLg2, after
m4’s RSN acknowledgement with stableRSN4 is

delivered to p2 by p4. This case shows our proposed
algorithm requires no additional interactions among
processes. The first is designed for imposing minimum
piggybacking overhead on network links.

The second stable message log purging algorithm,
named V-PURGER, exploits a table with piggybacking
data, lRSNsP, for incurring no extra message and
forced checkpoint. With this table, this algorithm may
significantly boost expunging needless recovery data
and have enough available space of volatile storage
remain long to the hilt compared with the first one
L-PURGER.

V-PURGER can be combined with the protocol in
[4] like in Fig. 3. The two algorithms enable their
users to control piggybacking overhead depending on
their preference and network condition.

Ⅲ. Performance Evaluation

Brief experiments are performed in this paper to
compare performance of our two algorithms,
L-PURGER and V-PURGER, and that of the traditional
one, T-PURGER[6], using a simulation tool[9]. For this
purpose, the first performance index is exploited to
measure the effectiveness of the presented algorithms;
the mean time required till having the volatile memory
used on logging for every process full-packed(Tbfull).
This factor is the most important metric for this
comparison because this kind of inter-message
dependency data piggybacking algorithm is designed to
potentially have the storage for logging messages
available till as late as possible. The evaluation factor
Tbfull is examined under the condition that the three
algorithms execute with no duplicated control messages
and checkpoints. The other factor is exploited for
measuring extra checkpointing overheads unavoidably
incurred despite each algorithm’s effort; the average
number of additional checkpoints that should be forced
to take due to the unavailability of the volatile
storage(Taddckt).

Journal of KIIT. Vol. 17, No. 5, pp. 21-27, May 31, 2019. pISSN 1598-8619, eISSN 2093-7571 25

Fig. 3. Our SBML protocol including V-PURGER

A general network based system composed of 10
nodes inter-connected is simulated. Each process
performs its own task on one node and it is supposed
to start and terminate its execution at the same time
for simplicity of experiment. The message transmission
capacity of a link in the network is 100Mbps and its
propagation delay is 1ms. For the simulation, suppose
that the size for every message ranges from 1KB to
1MB and the volatile storage size for saving messages
is 128MB per process. Every process takes normal
checkpointing with a checkpoint interval following an
exponential distribution with a mean Tnc=300 seconds.
In addition, the mean message sending rate, Tinterval,
follows an exponential distribution.

Fig. 4 illustrates the mean time of the three
algorithms spent till having the volatile memory used
on logging for every process full-packed for the
specified range of the Tinterval values. As Tintervals of all
the algorithms arise in Fig. 4, their corresponding Tbfulls
also become higher. The outcome comes from the
behavioral feature that as application messages are
gradually transmitted slower, their message log size
also increases at a lower rate. However, as we can
expect, Tbfull of algorithm T-PURGER is significantly
faster than the two algorithms L-PURGER and
V-PURGER. Similarly, V-PURGER vastly surpass
L-PURGER in Tbfull. Specifically, as Tinterval increments
accordingly, the increasing rate of V-PURGER becomes

26 Duplicated Control Data Purging Algorithms for SBML Protocol Tolerating Temporary Communication Errors

much higher than that of L-PURGER. The advantage
of our algorithms comes from their following desirable
feature: with these algorithms, each process p can
willingly and locally expunge needless recovery data
from the volatile storage by only carrying an integer
value or a table with piggybacking data on each
control message whereas the traditional algorithm does
not so.

Fig. 5 illustrates the average number of additional
checkpoints to be forced to take triggered by the
unavailability of the volatile storage(Taddckt) for the
various Tinterval values. With this result, it may be
recognized that Taddckts of the three algorithms arise
when Tinterval becomes gradually lower.

Fig. 4. Tbfull according to Tinterval

Fig. 5. Taddckt according to Tinterval

This outcome results from the following reason; as
processes often disseminate messages, the speed of
message log stacking up on the volatile storage may be
much faster despite effectiveness of local message
purging. In the figure, L-PURGER’s Taddckt is much
lower than that of T-PURGER, reducing up to 58%,
which illustrates effect of local garbage collection
gained by inter-message dependency data piggybacking.
Also, V-PURGER performs better than L-PURGER in
terms of Taddckt because V-PURGER utilizes table data
structure for exchanging dependency data about
message stability. However, as the number of processes
becomes larger, the piggybacking overhead of
V-PURGER may be a performance bottleneck compared
with L-PURGER.

Therefore, our proposed algorithms L-PURGER and
V-PURGER are fairly effective for making enough
available space of volatile storage remain long to the
hilt while minimizing network overhead compared with
the traditional one. In addition, depending on the scale
of the system and its network characteristics, one of
our proposed algorithms performs better than the other.

Ⅳ. Conclusion

 In this paper, two redundant stable message log
purging algorithms L-PURGER and V-PURGER were
proposed requiring no extra control message
interaction. L-PURGER satisfies this goal with a very
little overhead by piggybacking an integer value in the
notification and check messages about the RSN for
every message whereas V-PURGER exploits a table
with piggybacking data to boost expunging needless
recovery data and potentially have enough available
space of volatile storage remain long to the hilt. The
experimental outcomes illustrate the two algorithms
perform vastly better than the traditional one in terms
of volatile storage availability while they have their
respective strengths and weaknesses against each other.
Therefore, it is believed that the two algorithms can

Journal of KIIT. Vol. 17, No. 5, pp. 21-27, May 31, 2019. pISSN 1598-8619, eISSN 2093-7571 27

greatly enhance availability of the volatile memory
each process holds with low cost if they are applied
into the protocol in[4].

For future research, our SBML protocol with the
proposed algorithms will be refined to enable their
users to control piggybacking overhead depending on
their preference and network condition.

References

[1] S. Di, L. Bautista-Gomez, and F. Cappello,
"Optimization of multi-level checkpoint model with
uncertain execution scales", In Proc. of the
International Conference for High Performance
Computing, Networking, Storage, and Analysis,
New Orleans, LA, USA, pp. 907-918, Nov. 2014.

[2] L. Bautista-Gomez, T. Ropars, N. Maruyama, and
S. Matsuoka, "Hierarchical clustering strategies for
fault tolerance in large scale HPC systems", In
Proc. of the IEEE International Conference on
Cluster Computing, Beijing, China, pp. 355-363,
Sep. 2012.

[3] W. Bland, A. Bouteiller, T. Herault, G. Bosilca,
and J. J. Dongarra, "Post-failure recovery of MPI
communication capability: design and rationale",
The International Journal of High Performance
Computing Applications, Vol. 27, No. 3, pp. 244-
254, Jun. 2013.

[4] J. Ahn, "Lightweight Consistent Recovery
Algorithm for Sender-based Message Logging in
Distributed Systems", IEICE Transactions on
Information and Systems, Vol. E94-D, No. 8, pp.
1712-1715, Aug. 2011.

[5] P. Jaggi and A. Singh, "Log based recovery with
low overhead for large mobile computing
systems", Journal of Information Science and
Engineering, Vol. 29, No. 5, pp. 969-984, Sep.
2013.

[6] D. Johnson and W. Zwaenpoel, "Sender-based
Message Logging", In Proc. of the 7th
International Symposium on Fault-Tolerant

Computing, pp. 14-19, Jul. 1987.
[7] H. Meyer, D. Rexachs, and E. Luque, "Hybrid

Message Pessimistic Logging. Improving Current
Pessimistic Message Logging Protocols", Journal of
Parallel and Distributed Computing, Vol. 104, No.
C, pp. 206-222, Jun. 2017.

[8] B. Yao, K. Ssu, and W. Fuchs, "Message logging
in mobile computing", the 29th International
Symposium on Fault-Tolerant Computing, pp.
14-19, Nov. 1999.

[9] R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X.
Zeng, J. Martin, and H. Y. Song, "Parsec: A
Parallel Simulation Environments for Complex
Systems", IEEE Computer, Vol. 31, No. 10, pp.
77-85, Oct. 1998.

Authors

Hee-Kwon Chin

1998 : Ph.D. in Dept. of Law,

Korea University
2003 ~ Present : Professor of

Dept. of Law, Kyonggi
University

Research Interests : Philosophy of
Law, Data Privacy Law

Jin-Ho Ahn

2003 : Ph.D. in Dept. of
Computer Science & Eng.,
Korea University

2003 ~ Present : Professor of
School of Computer Science &

Eng., Kyonggi University
Research Interests : Distributed &

Parallel Computing, Cloud Computing, CPS

	Duplicated Control Data Purging Algorithms for SBML Protocol Tolerating Temporary Communication Errors
	Abstract
	요약
	Ⅰ. Introduction
	Ⅱ. The Proposed Algorithms
	Ⅲ. Performance Evaluation
	Ⅳ. Conclusion
	References

