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Abstract

The sender-based message logging protocol tolerating temporary communication errors potentially has the complete 
recovery data for every message maintained in the volatile storage of its sender as well as in volatile storages of 
senders of its dependents. This paper presents two duplicated control data purging algorithms to expunge needless 
recovery data from volatile storages of senders of the dependents without requiring any extra control messages. The 
first algorithm satisfies this goal with a very little overhead by piggybacking an integer value on the notification and 
check messages about the receive sequence number of every message. The other algorithm exploits a table with 
piggybacking data to boost expunging needless recovery data and have enough available space of volatile storage 
remain long to the hilt. The experimental outcomes illustrate the two presented algorithms perform vastly better than 
the traditional one in terms of volatile storage availability.  

요  약

일시적인 통신 오류를 포용하는 송신자 기반 메시지 로깅 프로토콜은 각 메시지를 위한 완전한 회복데이터

를 메시지 송신자의 휘발성 저장소뿐만 아니라 그 메시지에 종속된 메시지들의 송신자 저장소에도 유지도록 

할 수 있다. 본 논문에서 각 메시지의 종속된 메시지들의 송신자 휘발성 저장소로부터 불필요한 회복데이터를 

제거하며 어떠한 추가 제어 메시지도 요구하지 않는 두 개의 중복된 제어 데이터 제거 알고리즘을 제안한다.
첫 번째 알고리즘은 초저비용으로 이러한 목적을 만족시키기 위해 각 메시지의 수신 일련번호에 대한 알림메

시지와 확인 메시지에 한 정수 값만을 포함시킨다. 두 번째 알고리즘은 피기백 정보를 포함한 하나의 테이블

을 이용하여 불필요한 회복데이터 제거를 가속화하고 휘발성 저장소의 충분한 가용 공간이 가능한 오랫동안 

유지되도록 한다. 실험 결과는 제안한 두 알고리즘이 휘발성 저장소 가용성 측면에서 기존 알고리즘에 비해 

상당히 성능이 좋다는 것을 보여준다.
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Ⅰ. Introduction

Currently, as a lot of very powerful 
micro-processors and high speed network hardwares 
are produced at low prices, large-scale distributed 
systems, composed of heterogeneous inter-connected 
nodes, may become the basis of high-performance and 
inexpensive parallel processing environments[1]. 
Therefore, long-running scientific applications on 
large-scale distributed systems can concurrently use all 
the available resources in clusters of heterogeneous 
computers[2][3]. However, when designing and 
implementing the systems for this purpose, an 
important problem should be considered. The problem 
is that as their size becomes greatly larger, their 
vulnerability to node failures may raise together[2][3]. 
Thus, they require ways to allow the applications 
computation to persist despite future crashes. 
Moreover, the techniques should not result in high 
overhead. With deliberately saving messages received 
by each process on volatile or stable storage with its 
checkpoints, log-based rollback recovery allows a 
system to be restored beyond its latest globally 
consistent state. This behavioral property is beneficial 
for the application fields with the difficulty of rolling 
back to the earlier state. Among this kind of 
techniques, sender-based message logging(SBML)[4]-[7] 
allows each message to be saved on its sender's 
volatile storage with no synchronous logging on stable 
storage. Therefore, it's normal operation overhead is 
much smaller than that of the receiver-based message 
logging(RBML)[8]. 

Although it has several advantages like being  
completely implemented as a software solution and 
supporting lower cost fault-tolerance compared to 
RBML, it holds two weaknesses in case there occur 
some temporary communication errors [4]. First, as the 
errors potentially have some messages received be 
partially logged, but their subsequently received 
messages, fully logged, the recovery process of the 

original SBML[5]-[7] may continue to perform no 
longer in case of failures of their receivers. Next, if 
several application messages may not be totally logged 
due to the transitory communication errors, this 
situation may make every send function call invoked 
after the last received message postponed till the 
termination of their fully logging procedures is notified 
by their receivers. To overcome this kind of 
shortcoming, our previous work presented a consistent 
SBML protocol enabling every process to piggyback a 
little control data for partially logged messages on 
each control message. In this case, the transmitter of 
every previously sent message can get the receive 
sequence number(rsn) granted for the message. But, it 
potentially have the complete recovery data for every 
message maintained both on the volatile storage of its 
sender and on volatile storages of senders of its 
dependents. This paper proposes selective stable 
message log purging algorithms to expunge needless 
recovery data from volatile storages of their 
dependents' senders without resulting in any extra 
control messages. This beneficial feature can be 
attained by piggybacking different size of data about 
receive sequence numbers with no extra messages for 
logging. The first algorithm only piggybacks an integer 
value with no extra messages for logging to impose 
minimum overhead on network link. The second 
exploits a table with piggybacking data to boost 
expunging needless recovery data and have enough 
available space of volatile storage remain long to the 
hilt.

Ⅱ. The Proposed Algorithms
 
The original SBML[5]-[7] has the following two 

problems.

Ÿ Potential Inconsistency problem and high recovery 
cost: its recovery process may not continue to go 
ahead when temporary transmission errors between 
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failed and other processes occur and so should void 
rsns of completely logged messages and re-execute 
a large number of completely logging operations.

Ÿ Failure-free performance degradation: every send 
function call invoked after the last received message 
has to be postponed till the termination of their 
fully logging procedures is notified by their 
receivers.

To address these issues, our previous SBML 
protocol in [4] was proposed that piggybacks rsns of 
all the unstable messages on each notification message 
for a message received right before to its sender. So, 
this beneficial feature can ensure not only consistent 
recovery, but also processing postponed messages 
scheduled to be transmitted much earlier with a little 
extra cost despite temporary communication faults 
occurrence. The protocol has every process hold the 
variables as follows.

Ÿ Ssni: the send sequence number(SSN) of the last 
message Pi has sent before. 

Ÿ Rsni: the receive sequence number(RSN) of the last 
message Pi has deliver before.

Ÿ SsnVectori: a table where SSNVti[j] is the ssn of 
the latest message from process Pj that Pi delivered 
to the application. 

Ÿ Sendlgi: a set keeping e(rcvr, ssn, rsn, data) for 
every message Pi has sent. Here, element e is the 
recovery data of a message consisting of the four 
fields, the identifier of receiver(RID), SSN, RSN 
and data of the message.

Ÿ UMLgi: a set keeping e(sndr, ssn, rcvr, rsn) from 
recovery data for all unstable messages included in 
the notification message to Pi. Here, e is the 
recovery data of each unstable message, where the 
four fields are composed of its sender's 
identifier(SID), SSN, RID and RSN. 

Ÿ stableRSNi: the RSN of the last message delivered 
to Pi or saved when checkpointing. It is exploited 

for indicating which messages are currently stable.

In the protocol, on delivering the rsn value of 
message m to q from p, it piggybacks recovery data 
about all unstable received ones before m and after its 
last checkpoint on the notification message. A message 
is called unstable if its dependents don't currently have 
complete information about its fully logging. In 
contrast, a message is named, stable, if its property is 
opposite to that of unstable message. Moreover, the 
recovery data of each piggybacked unstable message is 
composed of three fields, its RSN, SSN, and SID. As 
q obtains the notification message, it should hold the 
recovery data for the unstable messages attached to 
the notification message in its memory buffer while 
m's rsn is reflected into its own log element. The 
check message for the RSN receipt of m triggers 
invoking every send function call requested after the 
unstable messages, but postponed till the termination 
of their fully logging procedures is notified by their 
receivers. For instance, when p2 recognizes fully 
logging of m3 on p4's volatile buffer in Fig. 1, it 
makes every postponed send function call invoked for 
actually transmitting out it because the rsn values of 
all the three messages obtained from p4 can be 
delivered to p2 during recovery unlike the original 
SBML. If p tries to save a local checkpointed state, it 
also enables every postponed send function calls 
before this state to start executing.

However, it may save not only the complete 
recovery data for every message on its sender’s volatile 
storage, Sendlgsndr, but also on the volatile storages of 
senders of its dependents, UMLgP. For instance, after 
the check messages about the receipt of m1's and m2's 
RSNs can be obtained by p2 from p1 and p3 in Fig. 
1, the recovery data for every message exists on both 
volatile storages of its sender and its successor’s 
sender. For this purpose, it needs cost-effective log 
purging algorithms to expunge needless recovery data 
from volatile storages of senders of message 
dependents.
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Fig. 1. A case depicting shortcomings of [4]

Fig. 2. A case depicting effectiveness of L-PURGER

For this purpose, one of two stable message log 
purging algorithms requiring no extra control message 
is first introduced, called L-PURGER, enabling a 
process to piggyback an integer value stableRSNp on 
each notification or acknowledgment control message. 
Here, stableRSNp is the RSN of the last message 
which was kept in its sender’s volatile memory and 
which has been received and seen by p. For instance, 
if a new message m4 is delivered to p2 from p4, p2 
increases its RSN and reply with it with stableRSN2 to 
p4, which can remove the recovery data of m1 and m2 
from its volatile storage in Fig. 2.

Also, if p4 has previously received several messages 
and p2 is the transmitter of their dependents, p2 can 
expunge the duplicated recovery data about the 
messages from the volatile storage of p2, UMLg2, after 
m4’s RSN acknowledgement with stableRSN4 is 

delivered to p2 by p4. This case shows our proposed 
algorithm requires no additional interactions among 
processes. The first is designed for imposing minimum 
piggybacking overhead on network links.

The second stable message log purging algorithm, 
named V-PURGER, exploits a table with piggybacking 
data, lRSNsP, for incurring no extra message and 
forced checkpoint. With this table, this algorithm may 
significantly boost expunging needless recovery data 
and have enough available space of volatile storage 
remain long to the hilt compared with the first one 
L-PURGER. 

V-PURGER can be combined with the protocol in 
[4] like in Fig. 3. The two algorithms enable their 
users to control piggybacking overhead depending on 
their preference and network condition.

Ⅲ. Performance Evaluation

Brief experiments are performed in this paper to 
compare performance of our two algorithms, 
L-PURGER and V-PURGER, and that of the traditional 
one, T-PURGER[6], using a simulation tool[9]. For this 
purpose, the first performance index is exploited to 
measure the effectiveness of the presented algorithms; 
the mean time required till having the volatile memory 
used on logging for every process full-packed(Tbfull). 
This factor is the most important metric for this 
comparison because this kind of inter-message 
dependency data piggybacking algorithm is designed to 
potentially have the storage for logging messages 
available till as late as possible. The evaluation factor 
Tbfull is examined under the condition that the three 
algorithms execute with no duplicated control messages 
and checkpoints. The other factor is exploited for 
measuring extra checkpointing overheads unavoidably 
incurred despite each algorithm’s effort; the average 
number of additional checkpoints that should be forced 
to take due to the unavailability of the volatile 
storage(Taddckt).
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Fig. 3. Our SBML protocol including V-PURGER

A general network based system composed of 10 
nodes inter-connected is simulated. Each process 
performs its own task on one node and it is supposed 
to start and terminate its execution at the same time 
for simplicity of experiment. The message transmission 
capacity of a link in the network is 100Mbps and its 
propagation delay is 1ms. For the simulation, suppose 
that the size for every message ranges from 1KB to 
1MB and the volatile storage size for saving messages 
is 128MB per process. Every process takes normal 
checkpointing with a checkpoint interval following an 
exponential distribution with a mean Tnc=300 seconds. 
In addition, the mean message sending rate, Tinterval, 
follows an exponential distribution.

Fig. 4 illustrates the mean time of the three 
algorithms spent till having the volatile memory used 
on logging for every process full-packed for the 
specified range of the Tinterval values. As Tintervals of all 
the algorithms arise in Fig. 4, their corresponding Tbfulls 
also become higher. The outcome comes from the 
behavioral feature that as application messages are 
gradually transmitted slower, their message log size 
also increases at a lower rate. However, as we can 
expect, Tbfull of algorithm T-PURGER is significantly 
faster than the two algorithms L-PURGER and 
V-PURGER. Similarly, V-PURGER vastly surpass 
L-PURGER in Tbfull. Specifically, as Tinterval increments 
accordingly, the increasing rate of V-PURGER becomes 
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much higher than that of L-PURGER. The advantage 
of our algorithms comes from their following desirable 
feature: with these algorithms, each process p can 
willingly and locally expunge needless recovery data 
from the volatile storage by only carrying an integer 
value or a table with piggybacking data on each 
control message whereas the traditional algorithm does 
not so.

Fig. 5 illustrates the average number of additional 
checkpoints to be forced to take triggered by the 
unavailability of the volatile storage(Taddckt) for the 
various Tinterval values. With this result, it may be 
recognized that Taddckts of the three algorithms arise 
when Tinterval becomes gradually lower.

Fig. 4. Tbfull according to Tinterval

Fig. 5. Taddckt according to Tinterval

This outcome results from the following reason; as 
processes often disseminate messages, the speed of 
message log stacking up on the volatile storage may be 
much faster despite effectiveness of local message 
purging. In the figure, L-PURGER’s Taddckt is much 
lower than that of T-PURGER, reducing up to 58%, 
which illustrates effect of local garbage collection 
gained by inter-message dependency data piggybacking. 
Also, V-PURGER performs better than L-PURGER in 
terms of Taddckt because V-PURGER utilizes table data 
structure for exchanging dependency data about 
message stability. However, as the number of processes 
becomes larger, the piggybacking overhead of 
V-PURGER may be a performance bottleneck compared 
with L-PURGER.

Therefore, our proposed algorithms L-PURGER and 
V-PURGER are fairly effective for making enough 
available space of volatile storage remain long to the 
hilt while minimizing network overhead compared with 
the traditional one. In addition, depending on the scale 
of the system and its network characteristics, one of 
our proposed algorithms performs better than the other.

Ⅳ. Conclusion

 In this paper, two redundant stable message log 
purging algorithms L-PURGER and V-PURGER were 
proposed requiring no extra control message 
interaction. L-PURGER satisfies this goal with a very 
little overhead by piggybacking an integer value in the 
notification and check messages about the RSN for 
every message whereas V-PURGER exploits a table 
with piggybacking data to boost expunging needless 
recovery data and potentially have enough available 
space of volatile storage remain long to the hilt. The 
experimental outcomes illustrate the two algorithms 
perform vastly better than the traditional one in terms 
of volatile storage availability while they have their 
respective strengths and weaknesses against each other. 
Therefore, it is believed that the two algorithms can 
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greatly enhance availability of the volatile memory 
each process holds with low cost if they are applied 
into the protocol in[4].

For future research, our SBML protocol with the 
proposed algorithms will be refined to enable their 
users to control piggybacking overhead depending on 
their preference and network condition.   
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