
Journal of KIIT. Vol. 17, No. 2, pp. 79-85, Feb. 28, 2019. pISSN 1598-8619, eISSN 2093-7571 79

 * Assistatant Professor, Dept. of Robot and Automation
Engineering, Dong-eui University

 - ORCID: https://orcid.org/0000-0002-9036-0872
 ** Professor, School of Electronics Engineering, Kyungpook

National University
 - ORCID: http://orcid.org/0000-0002-8102-4818

⋅Received: Dec. 24, 2018, Revised: Jan. 28, 2019, Accepted: Jan. 31, 2019
⋅Corresponding Author: Byungin Moon
 School of Electronics Engineering, Kyungpook National University,
 80 Daehakro, Bukgu, Daegu 41566, Korea,
 Tel.: +82-53-950-7580, Email: bihmoon@knu.ac.kr

A Sequence-Preserving Packet Scheduler for Multi-Core
Network Processors

Seung-Ho Ok*, Byungin Moon**

This work was supported by 2018 Dong-eui University Grant (grant number 201802880001).

Abstract

Recently, network processors (NPs) use multiple packet processing elements (PEs) to exploit packet-level
parallelism for high packet processing throughput. This paper presents a new sequence-preserving packet scheduler for
a NP with multiple packet PEs. Even though packets of the same flow are processed in parallel by different PEs,
the proposed scheduler preserves the correct output packet sequence of each flow by utilizing pre-estimated packet
processing time. Experimental results show that the proposed scheduler is able to increase the NP throughput when
compared with the conventional per-flow queuing (PFQ) method and round-robin (RR) packet scheduler. In addition,
the proposed scheduler achieves this performance improvement without a large hardware overhead, in contrast to the
conventional sequence number matching (SNM) method and the RR packet scheduler.

요 약

최근 네트워크 프로세서는 패킷 처리량을 높이기 위해 다중 패킷 처리기를 사용하여 패킷 수준의 병렬 처

리를 수행한다. 본 논문에서는 다중 패킷 처리기를 사용하는 네트워크 프로세서를 위한 새로운 시퀀스 보존

패킷 스케줄러를 제시한다. 동일한 흐름의 패킷들이 상이한 패킷 처리기에 의해 병렬로 처리되더라도, 제안된

스케줄러는 미리 추정된 패킷 처리 시간을 이용함으로써 각 흐름의 올바른 출력 패킷 시퀀스를 보존한다. 실

험 결과는 제안된 스케줄러가 기존의 PFQ(Per-Flow Queuing) 방법과 RR(Round-Robin) 패킷 스케줄러와 비교

할 때 네트워크 프로세서 처리량을 증가시킬 수 있었다. 또한 제안된 스케줄러는 기존의 SNM(Sequence

Number Matching) 방법과 RR 패킷 스케줄러와 달리 하드웨어 오버헤드 없이 성능을 향상시킬 수 있다.

Keywords
sequence-preserving packet scheduler, network processor, per-flow queuing, round-robin

http://dx.doi.org/10.14801/jkiit.2019.17.2.79

https://crossmark.crossref.org/dialog/?doi=10.14801/jkiit.2019.17.2.79&domain=http://ki-it.com/&uri_scheme=http:&cm_version=v1.5

80 A Sequence-Preserving Packet Scheduler for Multi-Core Network Processors

Ⅰ. Introduction

Most commercially available NPs use multiple PEs
to exploit packet-level parallelism for high packet
processing throughput. As a result, packets that are
processed by multiple PEs are likely to be transmitted
out-of-order at the output, thereby leading to a severe
degradation in network performance[1]-[4]. Thus, one
of the most important requirements for an NP is the
ability to preserve the correct output sequence of
packets of the same flow.

Generally, the PFQ and SNM methods are used to
preserve the sequence of the packets. In the case of
the PFQ, incoming packets of the same flow are
assigned to the same per-flow queue, and then
dispatched in order to the same PE[5]. As each PE
processes the packets assigned to it and sends them to
the output link scheduler in the order that the packets
come into the PE, the correct output sequence of
packets of the same flow is easily maintained.
However, when packets of the same flow come into
the NP consecutively, the throughput of the NP
deteriorates, as some PEs are in an idle state due to
an insufficient number of active flows. Meanwhile, the
SNM method assigns unique sequence numbers to
incoming packets, which are then processed by
multiple PEs regardless of the flow they belong to.
As the packet processing times differ according to the
features and lengths of the packets, the correct output
sequence of packets of the same flow is then sorted
using the packet sequence numbers and output buffers
[6][7]. However, if a particular packet is delayed in a
PE due to an unexpected exception, subsequent
packets of the same flow also have to be delayed in
the output buffers, thereby requiring output buffers
with unpredictable sizes to sort packets of the same
flow in the correct output sequence. As a result, the
SNM method can involve excessive hardware costs to
prevent an overflow of the output buffers.

On the other hand, in order to preserve the

sequence of the packets in a packet scheduler, an RR
based packet scheduler is proposed. In[8], a combined
version of the surplus RR and deficit RR called
packetized ordered round-robin (P-ORR) packet
scheduling is proposed. Since this algorithm schedules
given number of packets in each scheduling round,
idle periods on PEs between adjacent scheduling
rounds increase as the number of PEs increases. In
addition, as the variation of the length of the packets
increases, out-of-order packets are transmitted at the
output.

Accordingly, to increase the packet throughput and
PE utilization with minimal hardware overhead, we
propose a sequence-preserving packet scheduler that
exploits pre-estimated packet processing time for the
packet scheduling. The proposed algorithm differs from
the previous estimation-based pair queuing algorithm
[9] that focuses on the fairness between independent
flows and preserving the sequence of packets through
the PFQ method. Experimental results show that the
proposed scheduler increases the PE utilization when
compared with the PFQ scheduler, while avoiding the
need for many output buffers to sort packets of the
same flow in the correct sequence, unlike the SNM
scheduler.

Ⅱ. Proposed Packet Scheduler

Fig. 1 shows the architecture of the NP used to
evaluate the proposed scheduler. This NP can process
packets of the same flow in parallel using multiple
PEs in the processor array (PA), and its overall
operation is as follows. The packet scheduler (PS)
receives information related to packet scheduling from
the packet inspector (PI). The PS uses this information
of the current packet and the estimated finish time of
the packet of the same flow scheduled right before
the current packet, in order to schedule the current
packet so that its estimated finish time is larger than
that of the packet right before it.

Journal of KIIT. Vol. 17, No. 2, pp. 79-85, Feb. 28, 2019. pISSN 1598-8619, eISSN 2093-7571 81

Fig. 1. Network processor architecture with the proposed scheduler

This scheduling is carried out based on the unit
time (t) of the NP, which is the unit of
below-mentioned times related to packet scheduling. If
the actual finish time of packet processing differs
from the estimated finish time, then the output
sequence manager (OSM) sorts packets in the correct
output sequence using output buffers.

For an incoming packet, the PI detects its flow id i
and tags it with a unique sequence number k.
Thereafter, the PI performs a deep packet inspection
and estimates the packet processing time, then
transfers the scheduling information of the packet,
including the packet arrival time 

, where the

superscript k and subscript i denote the sequence
number and flow id of the packet, respectively, and
estimated packet processing time 

 to the PS.

The scheduling engine (SE) in the PS calculates the
start time of the packet processing 

 and estimated

finish time of the packet processing 
. This

process consists of three steps. First, to determine
whether packet k of flow i should be scheduled with
an additional time delay or not, the SE calculates the
relative finish time 

, as shown in Eq. (1).


  




 (1)

It is assumed that  is a constant delay time
between the packet arrival at the PI and the end of
the packet scheduling in the PS. 

 is the
estimated processing time of the previous packet k-1
of flow i. Note that the main role of the SE is to
schedule packets so that even though packets of the
same flow are processed in parallel by different PEs,
the correct sequence is maintained at the output of the
PA. Thus, the SE adjusts 

 when 
 is less than

or equal to zero as shown in Fig. 2 using the Eq.
(2).

82 A Sequence-Preserving Packet Scheduler for Multi-Core Network Processors

l

l

Fig. 2. Timing diagram of the packet scheduling

Finally, the SE calculates 
 through the

summation of Eq. (3) and keeps 
 for use in the

calculation of 
.


  


 if 

 ≤ 


  

 if 
  

 (2)


  


 (3)

Each PE includes a scheduling table (ST) as a job
queue for the packet processing. The SE stores the
processing information of each packet, such as its start
time 

, estimated finish time 
, main memory

address 
, next entry address 

, flow id 
,

and sequence number 
, in the ST of its

assigned PE.
The pseudo code in Fig. 3, which consists of two

functions, describes the main operations of the
proposed packet scheduler. The Scheduling_Engine
function schedules packet k of flow i. The scheduling
table manager (STM) points the last allocated entry in
each ST, so that the SE can easily find the ST with
the last entry that has the minimum estimated finish
time of packet processing min . In addition, if
min is greater than or equal to the calculated 

,


 and 

 are adjusted before the SE stores the

processing information for packet k in the ST.
The actual finish time of packet processing 



can differ from 
, due to an incorrect 

 or

unexpected exception during the packet processing in
the PE.

Fig. 3. Pseudo code of the proposed packet scheduler

If 
 is less than 

, packet k is buffered in

the OSM until the processing of the previous packets
of flow i is finished. Conversely, if 

 is greater

than 
, the ensuing packets of flow i are buffered

in the OSM until the processing of packet k is
finished. Furthermore, in this case, the processing
information stored in the ST to which packet k has
been assigned needs to be adjusted, and the SE
carries out this adjustment using the Error_Adjustment
function.

If 
 is greater than or equal to the S of the

first entry in the corresponding ST, the S and EF of
the first entry in the ST are adjusted based on the
difference between the 

 and S of the first entry

in the ST. Subsequent entries in the ST are also
adjusted based on the difference between the EF of
the current entry and the S of the next entry until this
difference is less than zero or the last entry in the ST
is reached.

Ⅲ. Experimental Results and Analysis

To compare the proposed processing-time-estimation
(PTE) packet scheduler with the conventional SNM,
PFQ, and P-ORR packet schedulers, four NP models,
each of which adopts one of these schedulers, was
implemented using C. For fair comparisons, all the
NP models consist of one SE and the same number
of PEs, and the same traffic patterns were applied to
them. Packets were generated with variable lengths,
ranging from 50 to 1500 bytes, as most Ethernet
LANs use a maximum transfer unit (MTU) of 1500
bytes. In addition, five traffic patterns were used with
a varying , the probability that packets of the
same flow enter the NP consecutively (i.e. the
probability of burst-type traffic patterns).  varies
from 0 to 1 with a step of 0.25, thus making five
different traffic patterns.

While packet processing time depends on various

factors, packet length is the key factor of packet
processing time [9]. Thus, in the experiments, it was
assumed that the actual packet processing time 



and estimated packet processing time 
 are

proportional to the packet length. However, to evaluate
the influence of incorrect 

 on the performance of

the PTE, 
 differs from 

 with an error value
of 10% and error rate  in the PTE experiments.

Fig. 4 shows the average utilization rates of the
PEs as a function of the number of PEs. The
experimental results showed that when the number of
PEs was increased, the utilization rates of the PEs
with the proposed PTE is saturated around 80% and
the conventional SNM remained constant, while the
utilization rate of the PEs with the PFQ and P-ORR
decreased as the number of PEs increased.

This was mainly because in cased of the PFQ and
P-ORR, increasing the number of PEs also increasing
number of idle PEs since the conventional PFQ
processes packets of the same flow sequentially using
the same PE and the idle period on PEs between
adjacent scheduling rounds increases in the P-ORR.

Meanwhile, in the case of the conventional SNM,
packets of the same flow are scheduled to multiple
PEs, regardless of the packet sequence, thereby
requiring a large hardware overhead to sort packets of
the same flow in the correct output sequence, in
contrast to the proposed PTE.

Fig. 4. Average utilization rate of PEs as function of the
number of PEs

 Fig. 5 shows the average number of packets per
cycle in the output buffers of the OSM. Here, when
the number of PEs is increased, the buffer size
required by the conventional SNM and P-ORR rapidly
increased. In contrast, when  ranged from 10% to
50%, the proposed PTE required a much smaller
output buffer size than the conventional SNM and
P-ORR.

Fig. 5. Average number of the packets per cycle in the
output buffers as a function of the number of PEs

Fig. 6. Average packet processing rate per PE as a
function of the number of PEs

Fig. 7. Average utilization rate of the PEs as a function of
the number of PEs

Figs. 6 and 7 show the influence of varying  on
the performance of the proposed PTE. As shown in
Fig. 6, varying  had a minimal influence on the
average packet processing rate per PE for the
following reasons. First, when 

 was less than


, this did not increase the packet processing rate,

as there was no change in the scheduling information
of the subsequent ST entries. Second, when 

 was

greater than 
, there was hardly any decrease in

the packet processing rate, as the Error_Adjustment
function in Fig. 3 generally offset the plus errors by
filling any idle time slots between subsequent ST
entries. Similarly, varying  had a minimal influence
on the PE utilization rate. This is because as the 
increased, idle time of packet processing between
adjacent entries of the ST is decreased by the
Error_Adjustment function of Fig. 3.

Ⅳ. Conclusion

This paper proposed a new sequence-preserving
packet scheduler for an NP with multiple PEs. Using
pre-estimated packet processing time and feedback
from the actual packet processing time in the PEs, the
proposed scheduler is able to preserve the correct
output sequence of packets of the same flow, even
though packets of the same flow are processed in
parallel by different PEs. Experimental results show
that the proposed scheduler improved the packet
processing rate and PE utilization rate when compared
with the conventional PFQ and P-ORR scheduler. As
the number of PEs are increased to 20, the utilization
rates of the proposed PTE is saturated to 80% while
the utilization rate of PFQ and P-ORR decreased to
60% and 32% respectively. This performance
improvement was also accomplished with only a small
number of output buffers, unlike the conventional
SNM and P-ORR scheduler. Furthermore, the proposed
scheduler even performed well with high error rates of
the packet processing time estimation. In future work,

Journal of KIIT. Vol. 17, No. 2, pp. 79-85, Feb. 28, 2019. pISSN 1598-8619, eISSN 2093-7571 85

an algorithm and hardware architecture will be
developed for cost-efficient and accurate packet
processing time estimation, which was not the concern
of this paper.

References

[1] M. F. Iqbal, J. Holt, J. H. Ryoo, G. de Veciana,
and L. K. John, "Dynamic Core Allocation and
Packet Scheduling in Multicore Network
Processors", in IEEE Transactions on Computers,
Vol. 65, No. 12, pp. 3646-3660, Dec. 2016.

[2] A. Shpiner, I. Keslassy, and R. Cohen, "Scaling
Multi-Core Network Processors without the
Reordering Bottleneck", in IEEE Transactions on
Parallel and Distributed Systems, Vol. 27, No. 3,
pp. 900-912, 1 Mar. 2016.

[3] T. J. Kim and B. Suh, "A Packet Loss
Differentiation and Guarantee in the Weighted fair
Queuing", The Journal of Korean Institute of
Information Technology, Vol. 11, No. 10, pp.
69-77, Oct. 2013.

[4] M. Laor and L. Gendel, "The effect of packet
reordering in a backbone link on application
throughput", Network, IEEE, Vol. 16, No. 5, pp.
28-36, Sep./Oct. 2002.

[5] Y. Qi, B. Xu, F. He, B. Yang, J. Yu, and J. Li,
"Towards high-performance flow-level packet
processing on multi-core network processors",
Proceedings of the 3rd ACM/IEEE Symposium on
Architecture for networking and communications
systems, Orlando, Florida, USA, pp. 17-26, Dec.
2007.

[6] N. Elnathan, "Reordering of out-of-order packets",
United States Patent, US 7,072,342, Jul. 2006.

[7] S. Traboulsi, M. Meitinger, R. Ohlendorf, and A.
Herkersdorf, "An efficient hardware architecture
for packet re-sequencing in network processors
mpsocs", 12th Euromicro Conference on Digital
System Design, Architectures, Methods and Tools,

Patras, pp. 11-18, Aug. 2009.
[8] J. N. Yao, J. N. Guo, and L. N. Bhuyan,

"Ordered round-robin: An efficient sequence
preserving packet scheduler", IEEE T Comput,
Vol. 57, No. 12, pp. 1690-1703, May 2008.

[9] T. Wolf, P. Pappu, and M. A. Franklin,
"Predictive scheduling of network processors",
Computer Networks, Vol. 41, No. 5, pp. 601-621,
Apr. 2003.

Authors

Seung-Ho Ok

 2006 : B.S., Mechatronics

Engineering, Dong-eui
Univerisy.

 2008 : M.S., School of Electrical

Engineering and Computer

Science, Kyungpook National
University.

2011 ~ 2013 : Visiting Scholar, Georgia Institute of

Technology.
2014 : Ph.D., School of Electronics Engineering,

Kyungpook National University.

2014 ~ 2017 : Senior Engineer, Samsung Electronics.
2017 ~ present : Assistant Professor, Dong-eui

Univerisy.

Research interests : robot vision, SoC, VLSI.

Byungin Moon

1995 : B.S., Electronic Engineering,

Yonsei University.
1997 : M.S., Electronic

Engineering, Yonsei University.

2002 : Ph.D., Electrical &
Electronic Engineering, Yonsei

University.

2002 ~ 2004 : Research Engineer, SK Hynix.
2004 ~ 2005 : Research Professor, Yonsei University.

2005 ~ present : Professor, Kyungpook National

University.
Research interests : SoC, computer architecture, vision

processor.

	A Sequence-Preserving Packet Scheduler for Multi-Core Network Processors
	Abstract
	요약
	Ⅰ. Introduction
	Ⅱ. Proposed Packet Scheduler
	Ⅲ. Experimental Results and Analysis
	Ⅳ. Conclusion
	References

